PSI - Issue 59

Hryhoriy Nykyforchyn et al. / Procedia Structural Integrity 59 (2024) 82–89 H. Nykyforchyn et al. / Structural Integrity Procedia 00 (2019) 000 – 000

89

8

Liu, M. A., Rivera- Díaz -del-Castillo, P. E., Barraza-Fierro, J. I., Castaneda, H., Srivastava, A., 2019. Microstructural influence on hydrogen permeation and trapping in steels. Materials & Design 167, 107605. Luu, W. C., Wu, J. K., 1996. The influence of microstructure on hydrogen transport in carbon steels. Corrosion Science 38(2), 239-245. Mogilny, G. S., Shyvaniuk, V. N., Teus, S. M., Ivaskevich, L. M., Gavriljuk, V. G., 2020. On a mechanism for enhanced hydrogen flux along grain boundaries in metals. Acta Materialia 194, 516-521. Mohtadi-Bonab, M. A., Szpunar, J. A., Basu, R., Eskandari, M., 2015. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5LX70 pipeline steel. International Journal of Hydrogen Energy 40, 1096 – 1107. Nykyforchyn, H.M., Student, O.Z., Dzioba, I.R., Stepanyuk, S.M., Markov, A.D., 2004. Degradation of welded joints of steam pipelines of thermal electric power plants in hydrogenating media. Materials Science 40(6), 836-843. Nykyforchyn, H., Krechkovska, H., Student, O., Zvirko, O., 2019. Feature of stress corrosion cracking of degraded gas pipeline steels. Procedia Structural Integrity 16, 153 – 160. Stopher, M. A., Lang, P., Kozeschnik, E., Rivera-Diaz-del-Castillo, P. E., 2016. Modelling hydrogen migration and trapping in steels. Materials & Design 106, 205-215. Shtoyko, I., Toribio, J., Kharin, V., Hredil, M., 2019. Prediction of the residual lifetime of gas pipelines considering the effect of soil corrosion and material degradation. Procedia Structural Integrity 16, 148 – 152. Student, O. Z., 1998. Accelerated method for hydrogen degradation of structural steel. Material Science 34 ( 4), 497-507. Tiegel, M. C., Martin, M. L., Lehmberg, A. K., Deutges, M., Borchers, C., Kirchheim, R., 2016. Crack and blister initiation and growth in purified iron due to hydrogen loading. Acta Materialia 115, 24-34. Tsyrul’nyk, О.Т., Kret, N.V., Voloshyn, V.A., Zvirko, O.I., 2018. A procedure of laboratory degradation of structural steels. Materials Science 53(5), 674 – 683. Yang, Y., Zhang, B., Wang, Y., Jiang, Z., Li, K., 2022. Mechanical behaviors and constitutive model of structural steel influenced by strain aging. Journal of Constructional Steel Research, 192, 107211. Vodopivec, F., 2004. Strain ageing of structural steels. Metalurgija 43(3), 143-148. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y., 2015. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Materials Science 50(5), 44 – 47. Veiga, R. G., Perez, M., Becquart, C. S., Clouet, E., Domain, C., 2011. Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in α -iron. Acta Materialia, 59(18), 6963-6974. Zv irko, О.І., Кryzhanivskyi, E.І., Nykyforchyn, H.М., Krechkovska, H.V., 2021. Methods for the evaluation of corrosion-hydrogen degradation of steels of oil-and-gas pipelines. Materials Science 56 (5), 585 – 592. Zvirko, O., Mytsyk, B., Nykyforchyn, H., Tsyrul nyk, O., Kost’, Y., 2023. Application of the various methods for assessment of in -service degradation of pipeline steel. Mechanics of Advanced Materials and Structures 30(24), 5058 – 5067. Zvirko, O. I., Hredil, M. I., Tsyrulnyk, O.T., Student, O. Z., Hykyforchyn, H. M., 2024. Mechanism of the development of damage of low strength pipe steel due to hydrogenation under operation. Materials Science 59(3), In press.

Made with FlippingBook - Online Brochure Maker