PSI - Issue 59

Oksana Hembara et al. / Procedia Structural Integrity 59 (2024) 190–197 Oksana Hembara et al. / Structural Integrity Procedia 00 (2019) 000 – 000

197

8

References

Andreikiv, O.E., Hembara, N.T., 2022. A mathematical model for the determination of hydrogen concentration corresponding to changes in the mechanism of deformation. Journal of Mathematical Sciences 263, 15 – 24. Capelle, J., Dmytrakh, I., Azari, Z., Pluvinage, G., 2013. Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52. International Journal of Hydrogen Energy 38, 14356 – 14363. Djukic, M.B., Bakic, G.M., Zeravcic, V.S., Sedmak, A., Rajicic, B., 2016. Hydrogen embrittlement of industrial components: prediction, prevention, and models. Corrosion 72, 943 – 961. Djukic, M.B., Bakic, G.M., Zeravcic, V.S., Sedmak, A., Rajicic, B., 2019. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion. Engineering Fracture Mechanics, 216, 106528. Djukic, M.B., Zeravcic, V.S., Bakic, G., Sedmak, A., Rajicic, B., 2014. Hydrogen embrittlement of low carbon structural steel. Procedia Materials Science 3, 1167 – 1172. Djukic, M.B., Zeravcic, V.S., Bakic, G.M., Sedmak, A., Rajicic, B., 2015. Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis 58, 485 – 498. Dmytrakh, I.M., 2011. Corrosion fracture of structural metallic materials: effect of electrochemical conditions in crack. Strain 47, 427 – 435. Dmytrakh, I.M., Leshchak, R.L., Syrotyuk, A.M., 2019. Influence of sodium nitrite concentration in aqueous corrosion solution on fatigue crack growth in carbon pipeline steel. International Journal of Fatigue 128, 105192. Dmytrakh, I.M., Syrotyuk, A.M., Leshchak, R.L., 2023. Special diagram for hydrogen effect evaluation on mechanical characterizations of pipeline steel. Journal of Materials Engineering and Performance. Dmytrakh, І.М., Syrotyuk, A.М., Leshchak, R.L., 2018. Specific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metal. Materials Science 54, 295 – 308. Dutkiewicz, M., Hembara, O., Chepil, O., Hrynenko, M., Hembara, T., 2023. A new energy approach to predicting fracture resistance in metals. Materials 16, 1566. Dutkiewicz, M., Hembara, O., Ivanytskyi, Ya., Hvozdiuk, M., Chepil, O., Hrynenko, M., Hembara, N., 2022. Influence of hydrogen on the fracture resistance of pre- strained steam generator steel 22K. Materials 15, 6596. Dwivedi, S.K., Vishwakarma, M., 2018. Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy 43, 21603 – 21616. Hembara, O.V., Chepil, O.Y., 2022. Modeling of the deformation of structural elements under the conditions of creep, corrosion cracking, and hydrogenation. Materials Science 57, 557 – 561. Ivanyts’kyi, Y., Hembara, O., Dudda, W., Boyko, V., Shtayura, S., 2022. Combined FEM and DIC Techniques for the 2D Analysis of the Stress Strain Fields and Hydrogen Diffusion Near a Blunt Crack Tip. Strength of Materials 54, 256 – 266. Krom, A.H.M., Koers, R.W.J., Bakker, A., 1999. Hydrogen transport near a blunting crack tip. Journal of the Mechanics and Physics of Solids 47, 971 – 992. Liang, Y., Sofronis, P., 2003. Toward a phenomenological description of hydrogen induced decohesion at particle/matrix interface. Journal of the Mechanics and Physics of Solids 51, 1509 – 1531. Mehrer, H., 2007. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Heidelberg: Springer Berlin, 654 p. Nyrkova, L., 2020. Stress-corrosion cracking of pipe steel under complex influence of factors. Engineering Failure Analysis 116, 104757. Ohaeri, E., Eduok, U., Szpunar, J., 2018. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy 43, 14584 – 14617. Oriani, R.A., 1970. The diffusion and trapping of hydrogen in steel. Acta Metallurgica 18, 147 – 157. Skalskyi, V., Andreikiv, O., Dolinska, I., 2018. Assessment of subcritical crack growth in hydrogen-containing environment by the parameters of acoustic emission signals. International Journal of Hydrogen Energy 43, 5217 – 5224. Sofronis, P., Liang, Y., Aravas, N., 2001. Hydrogen induced shear localization of the plastic flow in metals and alloys. European Journal of Mechanics A/Solids 20, 857 – 872. Sofronis, P., McMeeking, R.M., 1989. Numerical analysis of hydrogen transport near a blunting crack tip. Journal of the Mechanics and Physics of Solids 37, 317 – 350. Syrotyuk, А.М., Dmytrakh, I.M., 2014. Methods for the evaluation of fracture and strength of pipeline steels and structures u nder the action of working media. Part 1. Influence of the corrosion factor. Materials Science 50, 324 – 339. Taha, A., Sofronis, P., 2001. A micromechanics approach to the study of hydrogen transport and embrittlement. Engineering Fracture Mechanics 68, 803 – 834. Takayama, K., Matsumoto, R., Taketomi, S., Miyazaki, N., 2011. Hydrogen diffusion analyses of a cracked steel pipe under internal pressure. International Journal of Hydrogen Energy 36, 1037 – 1045. Yokobori, Jr At., Nemoto, T., Satoh, K., Yamada, T., 1996. Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip. Engineering Fracture Mechanics 55, 47 – 60.

Made with FlippingBook - Online Brochure Maker