PSI - Issue 59
Oleh Yasniy et al. / Procedia Structural Integrity 59 (2024) 17–23 Oleh Yasniy et al. / Structural Integrity Procedia 00 (2019) 000 – 000
23
7
References
Aldrich, C., 2020. Process Variable Importance Analysis by Use of Random Forests in a Shapley Regression Framework. Minerals 10, 2 – 17. Alpayndin, E., 2010. Introduction to Machine Learning. MIT Press, pp. 584. Andrea, C., Vittorio, D. C., Giovanni, F., Francesco, I., Stefano, N., Camilla, R., et al., 2018. Mechanical Behaviour and Phase Transition Mechanisms of a Shape Memory Alloy by Means of a Novel Analytical Model. Acta Mechanica et Automatica 12, 105 – 108. Auricchio, F., Boatti, E., Conti, M., 2015. SMA Biomedical Applications. Shape Memory Alloy Engineering, 307 – 341. Dinda, S., Kujawski, D., 2004. Correlation and Prediction of Fatigue Crack Growth for Different R-Ratios U sing Kmax and ∆K + Parameters. Engineering Fracture Mechanics 71, 1779−1790. Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall, Hamilton, Ontario, pp.823. Iasnii V., Yasniy P., 2019. Degradation of Functional Properties of Pseudoelastic NiTi Alloy Under Cyclic Loading: An Experimental Study. Acta Mechanica et Automatica 13, 95 – 100. Isalgue, A., Lovey, F. C., Terriault, P., Martorell, F., Torra, F.R.M., Torra, V., 2006. SMA for Dampers in Civil Engineering. Materials Transactions 47, 682 – 690. Kęcik , K., 2015. Application of Shape Memory Alloy in Harvesto-Absorber System. Acta Mechanica et Automatica 9, 155 – 160. Kim, K.B., Yoon, D.J., Jeong, J.C., Lee, S.S., 2004. Determining the Stress Intensity Factor of a Material with an Artificial Neural Network from Acoustic Emission Measure-ments. NDT and E International 37, 423 – 429. Ma, H., Cho, C., 2008. Feasibility Study on a Superelastic SMA Damper with Re-Centring Capability. Materials Science and Engineering A 473, 290 – 296. Ma, X., Xiaofan, H. Z. C. T., 2021. Prediction of Fatigue – Crack Growth with Neural Network-Based Increment Learning Scheme. Engineering Fracture Mechanics 241,1 – 12. Majd, M.K., Bahrami, M., Nouri, A., Nazarpak, M. H., 2023. A Finite Element Comparison Between Two Sizes of NiTi Commercial Staples Used in Scaphoid Fracture Fixation. Materials Science 59, 112 – 120. Mohanty, J.R., Verma, B.B., Parhi, D.R.K., Ray, P.K., 2009. Application of Artificial Neural Network for Predicting Fatigue Crack Propagation Life of Aluminum Alloys. Archives of Computational Materials Science and Surface Engineering 1, 133 – 138. Morgan, N. B., 2004. Medical Shape Memory Alloy Applications - The Market and its Products. Materials Science and Engineering A 378, 16 – 22. Onyshko, O.S., 2018. Modeling of the Physicomechanical Behavior of Bodies Made of Alloys with Shape Memory in the Presence of Electric Fields. Materials Science 53, 541 – 547. Pandis, N., Bourauel, CP., 2010. Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Semin Orthod WB Saunders 16, 249 – 257. Rodayna, H., Frédéric, C., Yuri, L., 2022. Review of Neural Network Modeling of Shape Memory Alloys. Sensors 22, 5610. Speck K.M, Fraker, A.C., 1980. Anodic Polarization Behavior of Ti-Ni and Ti-6A1-4V in Simulated Physiological Solutions. Journal of Dental Research 59, 150 – 1595. Torra, V., Auguet, C., Carreras, G., Dieng, L., Lovey, F.C., Terriault, P., 2012. The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations. Materials Science Forum 706 – 709, 2020 – 2025. Trehern, W., Ortiz-Ayala, R., Atli, K.C., Arroyave, R., Karaman, I., 2022. Data-Driven Shape Memory Alloy Discovery Using Artificial Intelligence Materials Selection (AIMS) Framework. Acta Materialia 228, 117751. Vikas, S.P., Anish, P., Muhammad, E.H., 2021. Generalised Regression Neural Network (GRNN) Architecture-Based Motion Planning and Control of an E-Puck Robot in V-REP Software Platform. Acta Mechanica et Automatica 15, 209 – 214. Yasniy, O., Demchyk, V., Lutsyk, N., 2022. Modelling of Functional Properties of Shape-Memory Alloys by Machine Learning Methods. Scientific Journal of TNTU 108, 74 – 78. Yasniy, O., Didych, I., Lapusta, Yu., 2020a. Prediction of Fatigue Crack Growth Diagrams by Methods of Machine Learning Under Constant Amplitude Loading. Acta Metallurgica Slovaca 26, 31 – 33. Yasniy, O., Didych, I., Fedak, S., Lapusta, Y., 2020b. Modeling of AMg6 Aluminum Alloy Jump-Like Deformation Properties by Machine Learning Methods. Procedia Structural Integrity 28, 1392-1398. Yasnii, O.P., Pastukh, O.A., Pyndus, Yu.I., Lutsyk, N.S., Didych, I.S., 2018. Prediction of the Diagrams of Fatigue Fracture of D16T Aluminum Alloy by the Methods of Machine Learning. Materials Science 54, 333 – 338.
Made with FlippingBook - Online Brochure Maker