PSI - Issue 59

6

Svitlana Fedorova et al. / Procedia Structural Integrity 59 (2024) 279–284 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

284

Fig. 1. PMR defect O  and O  for a) L min =1,5*10 -3 ; L

-3 , b) L

-3 ; L

-3 , c) L

-3 ; L

-3 .

max =5*10

min =2*10

max =5*10

min =6*10

max =8*10

6. Conclusion Using a potential representation by an implicit method, an unfactorized damageability function with decomposed parameters is obtained that is capable of describing the behavior of materials deviating from the Palmgren-Miner rule. This function may be recommended for practical use.

References

Chaboche, J., Lesne, P., 1988. A non - linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials and Structures 11, 1, 1–17. Fedorov, V., 2023. Theory and methods of constructing equations for the evolutionary damageability of materials. International Journal of Damage Mechanics 32, 10, 1144 – 1163. Golos, K., Ellyin, F., 1988. A total strain energy density theory for cumulative fatigue damage. Journal of Pressure Vessel Technology 110, 1, 36 – 41.

Kachanov, L., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht, pp. 135. Miner, M., 1945. Cumulative damage in fatigue. Journal of Applied Mechanics 12, 3, A159-A164. Palmgren, A., 1924. Die lebensdauer von kugellagern. VDI-Zetischrift 64, 339 – 341.

Made with FlippingBook - Online Brochure Maker