Issue 59

T. Djedid et alii, Frattura ed Integrità Strutturale, 59 (2022) 566-579; DOI: 10.3221/IGF-ESIS.59.37

N OMENCLATURE

RS CS

River sand Crushed sand

XRD

X-Ray diffraction

C 30/37

Compressive strength class 30/37

W/C

Water/Cement ratio Crushed gravel

CG G1 G2

Gravel (3/8) Gravel (8/16)

FT-IR XA2

Fourier-transform infrared spectroscopy Moderate aggressive environment

SP

Superplasticizer

R EFERENCES

[1] Alger, E.N.G.(1999). Document: Sable la nouvelle donne, Algérie, pp. 01-05. [2] Ahmad, S. and Mahmood, S. (2008). Effects of crushed and natural sand on the properties of fresh andhardened concrete. In: 33rd conference on our world in concrete and structures, Singapore, 100033006. [3] Elavenil, S., Vijaya, B. and Hariharan, K. (2005). Manufactured sand, a solution and an alternative to river sand and in concrete manufacturing. J Eng Comput Appl Sci (JEC&AS), 2(2), pp. 20–24. [4] Mounir, L. and Idrees, Z. (2019). Effect of total substitution of crushed limestone sand on concrete durability, European Journal of Environmental and Civil Engineering. DOI: 10.1080/19648189.2019.1649199. [5] Ahmed Ahmed, E. and Ahemed Kourd, A. E. (1989). Properties of concrete incorporating natural and crushed stone very fine sand, ACI Material Journal, 86(4), pp. 417-424. [6] Neville, A. M. (1995). Properties of concrete. Fourth edition, England, Longman, pp.844. [7] Chi, C., Wu, Y. and Riefler, C. (2004). The use of crushed dust production of self consolidating concrete (SCC), Recycling Concrete and other materials for sustainable development.ACI Symposium, 219, pp. 115-130. [8] Kenai, S., Benna, Y. and Menadi, B. (1999). The effect of fines in crushed calcareous sand on properties of mortar and concrete. Proceedings of the International Conference on Infrastructure regeneration and rehabilitation, Sheffield, pp. 253-261. [9] Djedid, T., Guettala, A. and Mani, M. (2019). Study of the workability and mechanical strength of concrete in the face of upwelling (Case of the El Oued region of Algeria. J Fundam Appl Sci. 11(1), pp. 368-384. DOI: 10.4314/jfas.v11i1.24. ISSN 1112-9867. [10] CCAA, T 60. (2008). Guide to the specification and use of manufactured sand in concrete, Australia, Cement concrete aggregate, pp. 1-15. [11] Shanmugapriya, T. and Uma, R. N. (2012). Optimization of partial replacement of M-S and by natural sand in high performance concrete with silica fume. Int J Eng Sci Emerg Technol, 2(2), pp.73-80. [12] Puneeth, G. T., Mamatha, A. (2016).An experimental investigation on the strength of concrete by partial replacement of cement with micro silica and naturel sand with manufactured sand. International Journal of Civil and Structural Engineering Research, 3 (2), pp. 52-57. [13] Nisnevich, M., Sirotin, G. and Eshel, Y.(2003). Light weight concrete containing thermal power station and stone quarry waste, Magazine of Concrete Research, 55, No. 4, pp. 313-320. Doi:10.1680/macr.2003.55.4.313. [14] Prakash, Rao. D. S. and Kumar, V. G. (2004). Investigations on concrete with stone crusher dust as fine aggregate. Indian concrete journal, 78(7), pp. 45-50. [15] Vasumathi, A.M. (2003). A study on the strength of the concrete by partial replacement of cement with fly ash and sand with quarry dust, Proceedings of National Seminar on Futuristics in Concrete and Construction Engineering, S.R.M Engineering College, Chennai, pp. 8-14. [16] Dreux, G. and Jean, FESTA. (1998). Nouveau guide du béton et de ses constituants. Paris, Eyrolles. p. 416. [17] EN 12350-2. (1999). Essais pour béton frais - Partie 2: Essais d'affaissement. Institut de normalisation, Serbie. [18] EN 12350-6. (1999). Essai pour beÂton frais - Partie 6: Masse volumique. Institut de normalisation, Serbie. [19] Neville, A. and Brooks, J.J. (2010). Concrete technology.Second Edition. ISBN.978-0-273-73219 8(pbk).

578

Made with FlippingBook Digital Publishing Software