Issue 59

D. Rigon et alii, Frattura ed Integrità Strutturale, 59 (2022) 525-536; DOI: 10.3221/IGF-ESIS.59.34

   a

ratio between the applied axial and shear stress amplitude (  a /  a )

material density [kg/m 3 ]

applied net-section stress amplitude [MPa]  eq,VM applied net-section von Mises equivalent stress ( 

    2 2 3

a ) [MPa]

, eq VM a

 a

applied net-section shear stress amplitude [MPa]

R EFERENCES

[1] Socie, D.F., Marquis, G.B. (2000). Multiaxial fatigue, SAE International. [2] Susmel, L. (2009). Multiaxial notch fatigue, Cambridge, Woodhead publishing. [3] Radaj, D., Vormwald, M. (2013). Advanced Methods of Fatigue Assessment, Berlin, Heidelberg, Springer Berlin Heidelberg. [4] Ellyin, F. (1997). Fatigue damage, crack growth, and life prediction, Chapman & Hall. [5] Stromeyer, C.E. (1914). The Determination of Fatigue Limits under Alternating Stress Conditions, Proc. R. Soc. A Math. Phys. Eng. Sci., 90(620), pp. 411–425, DOI: 10.1098/rspa.1914.0066. [6] Curti, G., Geraci, A., Risitano, A. (1989). A new method for rapid determination of the fatigue limit (in italian), Ing. Automotoristica, 42, pp. 634–636. [7] Luong, M.P. (1995). Infrared thermographic scanning of fatigue in metals, Nucl. Eng. Des., 158(2), pp. 363–376, DOI: 10.1016/0029-5493(95)01043-H. [8] La Rosa, G., Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. J. Fatigue, 22(1), pp. 65–73, DOI: 10.1016/S0142-1123(99)00088-2. [9] Curà, F., Curti, G., Sesana, R. (2005). A new iteration method for the thermographic determination of fatigue limit in steels, Int. J. Fatigue, 27(4), pp. 453–459, DOI: 10.1016/j.ijfatigue.2003.12.009. [10] Meneghetti, G. (2007). Analysis of the fatigue strength of a stainless steel based on the energy dissipation, Int. J. Fatigue, 29(1), pp. 81–94, DOI: 10.1016/j.ijfatigue.2006.02.043. [11] Meneghetti, G., Ricotta, M. (2018). The heat energy dissipated in the material structural volume to correlate the fatigue crack growth rate in stainless steel specimens, Int. J. Fatigue, 115(July), pp. 107–119, DOI: 10.1016/j.ijfatigue.2018.07.037. [12] Meneghetti, G., Ricotta, M., Atzori, B. (2013). A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss, Fatigue Fract. Eng. Mater. Struct., 36(12), pp. 1306–1322, DOI: 10.1111/ffe.12071. [13] Meneghetti, G., Ricotta, M. (2012). The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel, Eng. Fract. Mech., 81, pp. 2–16, DOI: 10.1016/j.engfracmech.2011.06.010. [14] Meneghetti, G., Ricotta, M., Negrisolo, L., Atzori, B. (2013). A Synthesis of the Fatigue Behavior of Stainless Steel Bars under Fully Reversed Axial or Torsion Loading by Using the Specific Heat Loss, Key Eng. Mater., 577–578, pp. 453– 456, DOI: 10.4028/www.scientific.net/KEM.577-578.453. [15] Meneghetti, G., Ricotta, M. (2016). Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack, Fract. Struct. Integr., 10(35), pp. 172–181, DOI: 10.3221/IGF-ESIS.35.20. [16] Meneghetti, G., Ricotta, M., Rigon, D. (2017).The heat energy dissipated in a control volume to correlate the fatigue strength of severely notched and cracked stainless steel specimens. Fatigue 2017, Cambridge, UK. [17] Rigon, D., Ricotta, M., Meneghetti, G. (2017). An analysis of the specific heat loss at the tip of severely notched stainless steel specimens to correlate the fatigue strength, Theor. Appl. Fract. Mech., 92, pp. 240–251, DOI: 10.1016/j.tafmec.2017.09.003. [18] Meneghetti, G., Ricotta, M., Atzori, B. (2016). A two-parameter, heat energy-based approach to analyse the mean stress influence on axial fatigue behaviour of plain steel specimens, Int. J. Fatigue, 82, pp. 60–70, DOI: 10.1016/j.ijfatigue.2015.07.028. [19] Rigon, D., Berto, F., Meneghetti, G. (2021). Estimating the multiaxial fatigue behaviour of C45 steel specimens by using the energy dissipation, Int. J. Fatigue, 151, pp. 106381, DOI: 10.1016/j.ijfatigue.2021.106381. [20] (2018). ASTM E2207 − 15. Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens, DOI: 10.1520/E2207-15.2. [21] Seyda, J., Pejkowski, Ł ., Skibicki, D. (2020). The Shear Stress Determination in Tubular Specimens under Torsion in

535

Made with FlippingBook Digital Publishing Software