Issue 59
A. Behtani et alii, Frattura ed Integrità Strutturale, 59 (2022) 35-48; DOI: 10.3221/IGF-ESIS.59.03
T
m Q PQ P
(9)
where P is the transformation matrix given by: 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 P
(10)
cos ;
sin and
2 sin 2 and
m Q is the stress-reduced stiffness for the material plane
where
1 12 2 12 2 2
0 0 0 0 0 0
G
0 0 0
0 0 0
0 0
Q
(11)
23
m
G
0
0
13
G
0 0
12
E
E
1
2
Here 2 E is the equivalent Young’s modulus for the layers that are perpendicular to fibres. On the other hand, 12 and 21 are Poisson’s ratios. 23 G is the shear modulus for planes 2 − 3, 13 G is the equivalent shear modulus for planes 1 − 3, and 12 G represent the shear modulus for planes 1 − 2. The variables w , x and y can be expressed in the harmonic forms as follows: , , , , , , , , , i t i t x x i t w x y t x y e x y t x y e x y t x y e (12) 1 12 21 1 ; and 2 12 21 1 , where 1 E is Young’s modulus for a layer parallel to fibres. And
y
y
and the equations of motion (6) become:
2
2
2
x
x
K A
A
I
s
55
44
0
2
2
x
x
x
y
2
2
2
2
y
y
2
x
D D
I
D
K A
(13)
s
x
x
11
12
66
55
2
2
2
x y
x y
x
x
y
2
2
2
2
y
y
2 I
x
x
D
D
D
K A
y
s
y
2
12
22
66
44
2
2
2
x y
y
y
y
x
In which is natural frequency.
39
Made with FlippingBook Digital Publishing Software