Issue 59

M. Shariyat, Frattura ed Integrità Strutturale, 59 (2022) 423-443; DOI: 10.3221/IGF-ESIS.59.28

*

, N R

, N R

Σ

/ Σ

 

 

a

a

1

2

1

1

2

2

(26)

*

, N R

, N R

Σ

/ Τ

 

 

a

a

1

1

1

Therefore, according to Eqns. (22) and (26), one may deduce that:

2

2

 

   

    , , m u m u 1 1 2 2

  , m u

    

        

 1

 1

a

a

1

1

1 1





R

R

1

1

2

  t

    2 t

    t

  

 1

 

1

1

 

  , m u

a

a

2





R

R

1

1

  t

2

12

(27)

2

eq

 

    , , m u m u 1 1 2 2

 1

a

1



R

1

  t

( ) ( ) t

1

1

2

a

2



R

1

2

2

The time history of    eq t stress has to be plotted and the contents of the cycle histograms may be determined based on the Rainflow procedure; so that Miner’s damage accumulation rule can be applied to the stochastic time history sample to evaluate the resulting fatigue damage:

( ) n

   1 i

i eq

D

(28)

N

eq

where

m

   

    

   m

 

 

1

* 1 Σ Γ

 u

R

,

, eq

1

eq

 

N

(29)

  

eq

a eq

 eq N for the i th Rainflow cycle counting stage of the histogram of the equivalent

( ) i eq n is the number of cycles associated

stress. To check the matrix failure, one may start from Eqn. (23), expressing all fatigue strengths in terms of Y instead of X . Using a procedure similar to that led to Eqn. (27), the following equivalent stress expression may be proposed for checking the matrix cracking:

2

2

 

   

    , , m u m u 1 1 2 2

  , m u

    

        

a

a

2

2

2 2





R

R

1

1

2

  t

    1 t

2

2

  

( ) t

 

2

2

2

 

  , m u

 1

a

a

1





R

R

1

1

  t

12

(30)

1

eq

 

    , , m u m u 1 1 2 2

a

2



R

1

2

  t

( ) ( ) t

2

1

2

 1

a

1



R

1

1

Similarly, starting from Eqn. (24), shear failure may be checked by using the following equivalent stress expression:

2

2

    

          

    

  , m u

  , m u

 

 

a

a

    1 t

    2 t





R

R

1

1

   2 ( ) t

12

12

  , m u

  , m u

a

a

1

1 1

2

2 2





R

R

1

1

1

2

  t

1

2

(31)

eq

2

  , m u

 

a



R

1

       1 2 t t

12

   

  , m u

  , m u

a

a

1

2

1 1

1 1





R

R

1

1

1

1

1

2

So that, Eqn. (28) may be replaced by:

430

Made with FlippingBook Digital Publishing Software