Issue 59
R. Fincato et alii, Frattura ed Integrità Strutturale, 59 (2022) 1-17; DOI: 10.3221/IGF-ESIS.59.01
[2] Ikushima, K., Yano, T., Natsume, R., Shibahara, M., Ohata, M. (2017). Study on fracture mode of spot weld joint using continuum damage mechanics model, Q. J. Japan Weld. Soc., 35(2), pp. 28s-32s, DOI: 10.2207/qjjws.35.28s. [3] Watanabe, I. (2015). Multiscale Modeling of Ductile Fracture in Continuum Mechanics, Tetsu-to-Hagane, 101(9), pp. 465–470, DOI: 10.2355/tetsutohagane.TETSU-2015-022. [4] Sugiyama, H., Matsui, K., Endo, T., Yamada, T. (2014). Propagation of discontinuities with damage model, Proc. Comput. Mech. Conf., 2014.27, pp. 473–474, DOI: 10.1299/jsmecmd.2014.27.473. [5] Pantazopoulos, G. (2019). A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies, Metals (Basel)., 9(2), pp. 148, DOI: 10.3390/met9020148. [6] Besson, J., Forest, S., Cailletaud, G., Blétry, M., Chaboche, J.L. (2010). Non-linear mechanics of materials, Solid Mech. Its Appl., DOI: 10.1007/978-90-481-3356-7_1. [7] Noell, P.J., Carroll, J.D., Boyce, B.L. (2018). The mechanisms of ductile rupture, Acta Mater., 161, pp. 83–98, DOI: 10.1016/j.actamat.2018.09.006. [8] Wada, Y., Ueda, K. (2019). Evaluation of equivalent plastic strain and stress triaxiality and Δ J for proposing a crack growth formula under extremely low cycle fatigue, Proc. Comput. Mech. Conf., 2019.32, pp. 092, DOI: 10.1299/jsmecmd.2019.32.092. [9] Sawamoto, Y., Kubota, J., Ohsaki, M. (2020). Evaluation on plastic deformation capacity of steel beam ends with local buckling andfracture under cyclicloading using FE analysis, J. Struct. Constr. Eng. (Transactions AIJ), 85(767), pp. 105– 115, DOI: 10.3130/aijs.85.105. [10] Kimura, K., Tomioka, N., Okabe, A. (2019). High Cycle Fatigue Damage of Steel Sheet used in Vehicle Body, Proc. Mater. Mech. Conf., 2019, pp. gs14, DOI: 10.1299/jsmemm.2019.GS14. [11] Pantazopoulos, G. (2002). Leaded Brass Rods C 38500 for Automating Machining Operations: A Technical Report, J. Mater. Eng. Perform., 11(4), pp. 402–407, DOI: 10.1361/105994902770343926. [12] Lynch, S.P., Moutsos, S. (2006). A brief history of fractography, J. Fail. Anal. Prev., DOI: 10.1361/154770206X156231. [13] Lu, M., Wang, F., Zeng, X., Chen, W., Zhang, J. (2020). Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics, Theor. Appl. Fract. Mech., 105, pp. 102402, DOI: 10.1016/j.tafmec.2019.102402. [14] Margolin, B., Karzov, G., Shvetsova, V., Kostylev, V. (2002). Modelling for transcrystalline and intercrystalline fracture by void nucleation and growth, Fatigue Fract. Eng. Mater. Struct., 21(2), pp. 123–137, DOI: 10.1046/j.1460-2695.1998.00474.x. [15] Sun, Z., Benabou, L., Xue, H. (2016). Numerical modeling and simulation of intergranular fracture due to dynamic embrittlement for a CuNiSi alloy, Mech. Res. Commun., 75, pp. 81–88, DOI: 10.1016/j.mechrescom.2016.06.003. [16] Ikeya, H., Umezawa, O., Fukutomi, H. (2019). Crystal lattice rotation and fatigue crack generation in aluminum wire under cyclic bending deformation, J. Japan Inst. Light Met., 69(6), pp. 302–208, DOI: 10.2464/jilm.69.302. [17] Alderliesten, R. (2017).Fatigue crack propagation. Solid Mechanics and its Applications. [18] He, L., Akebono, H., Sugeta, A., Hayashi, Y. (2020). Cumulative fatigue damage of stress below the fatigue limit in weldment steel under block loading, Fatigue Fract. Eng. Mater. Struct., 43(7), pp. 1419–1432, DOI: 10.1111/ffe.13204. [19] Sakai, T. (2009). Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, J. Solid Mech. Mater. Eng., 3(3), pp. 425–39, DOI: 10.1299/jmmp.3.425. [20] Tang, L., Ince, A., Zheng, J. (2020). Numerical modeling of residual stresses and fatigue damage assessment of ultrasonic impact treated 304L stainless steel welded joints, Eng. Fail. Anal., 108, pp. 104277, DOI: 10.1016/j.engfailanal.2019.104277. [21] Borges, M.F., Neto, D.M., Antunes, F.V. (2020). Numerical simulation of fatigue crack growth based on accumulated plastic strain, Theor. Appl. Fract. Mech., 108, pp. 102676, DOI: 10.1016/j.tafmec.2020.102676. [22] Tanaka, N., Saitou, Y., Matsumura, T. (2019). Very high cycle fatigue properties and damage mechanism of cast aluminum alloy, Proc. Mater. Mech. Conf., pp. os0905, DOI: 10.1299/jsmemm.2019.OS0905. [23] Nowak, K. (2020). Application of a nonlocal grid model for analysis of the creep damage of metals, Int. J. Damage Mech., 29(5), pp. 780–797, DOI: 10.1177/1056789519883668. [24] Meng, Q., Wang, Z. (2019). Creep damage models and their applications for crack growth analysis in pipes: A review, Eng. Fract. Mech., 205, pp. 547–576, DOI: 10.1016/j.engfracmech.2015.09.055. [25] Liu, Y., Murakami, S. (1998). Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis., JSME Int. J. Ser. A, 41(1), pp. 57–65, DOI: 10.1299/jsmea.41.57. [26] Zheng, X., Xu, Q., Lu, Z., Wang, X., Feng, X. (2020). The development of creep damage constitutive equations for high Cr steel, Mater. High Temp., 37(2), pp. 129–138, DOI: 10.1080/09603409.2020.1716145. [27] Yamazaki, N., Nomura, K., Kubushiro, K. (2020). Creep-Fatigue Damage for Boiler Header Stub Mock-Up Specimen
12
Made with FlippingBook Digital Publishing Software