Issue 59
H.A. Mobaraki et alii, Frattura ed Integrità Strutturale, 59 (2022) 198-211; DOI: 10.3221/IGF-ESIS.59.15
F INITE E LEMENT S OLUTION
I
n order to obtain numerical results, we propose a higher-order plate element as shown in Fig. 2. The element has 9 nodes and each node has 5 degrees of freedom including the axial displacement 0 u , lateral displacements 0 0 , v w , and independent rotations , x y . To obtain the generalized displacement corresponding to each degree of freedom inside an element, the Lagrange interpolation is used. This can be stated as: 0 , u u x y N d 0 , v v x y N d 0 , w w x y N d (12) , x x x y N d
y x y ,
N d
y
where d is the element nodal displacement vector and u N , v N , w N ,
y N are the shape function
x N , and
matrices, defined as: u N N 1
N
N
0 0 0 0
0 0 0 0
0 0 0 0
2
9
v N N 0
N
N
0 0 0 0
0 0 0
0
0 0 0
1
2
9
w N
N
N
N
0 0
0 0 0 0
0 0
0 0
0 0
(13)
1
2
9
x N
N
N
N
0 0 0
0 0 0 0
0
0 0 0
0
1
2
9
y N
N
N
N
0 0 0 0
0 0 0
0
0 0 0 0
1
2
9
i N functions are
where the
1 1 2 1 1 2 1 N 2 4 1 1 2 1 N 3 2 1 1 2 1 N 4 4 1 2 1 1 N 5 16 1 1 N
(14)
202
Made with FlippingBook Digital Publishing Software