Issue 58
F.R. Andreacola et al., Frattura ed Integrità Strutturale, 58 (2021) 282-295; DOI: 10.3221/IGF-ESIS.58.21
and properties of 17-4 PH stainless steel fabricated by selective laser melting, J. Mater. Res. Technol., 1(3), pp. 167– 177, DOI: 10.1016/S2238-7854(12)70029-7. [15] Giganto, S., Zapico, P., Castro-Sastre, M.Á., Martínez-Pellitero, S., Leo, P., Perulli, P. (2019). Influence of the scanning strategy parameters upon the quality of the SLM parts, Procedia Manuf., 41, pp. 698–705, DOI: 10.1016/j.promfg.2019.09.060. [16] SLM Solutions. (n.d.). Material Data Sheet Stainless Steel 17-4PH/1.4542/A564. [17] Larimian, T., Kannan, M., Grzesiak, D., AlMangour, B., Borkar, T. (2020). Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting, Mater. Sci. Eng. A, 770(September 2019), pp. 138455, DOI: 10.1016/j.msea.2019.138455. [18] ASTM. (2020). ASTM A370-20: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM Int., , DOI: 10.1520/A0370-20. [19] Hitzler, L., Janousch, C., Schanz, J., Merkel, M., Heine, B., Mack, F., Hall, W., Öchsner, A. (2017). Direction and location dependency of selective laser melted AlSi10Mg specimens, J. Mater. Process. Technol., 243, pp. 48–61, DOI: 10.1016/j.jmatprotec.2016.11.029. [20] Zhang, H., Gu, D., Ma, C., Guo, M., Yang, J., Wang, R. (2019). Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting, Mater. Sci. Eng. A, 765(March), pp. 138294, DOI: 10.1016/j.msea.2019.138294. [21] Sarkar, S., Kumar, C.S., Nath, A.K. (2019). Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel, Mater. Sci. Eng. A, 755(February), pp. 235–245, DOI: 10.1016/j.msea.2019.04.003. [22] SLM Solutions. (n.d.). Metal powder optimized for Selective Laser Melting. [23] Yadollahi, A., Shamsaei, N., Thompson, S.M., Elwany, A., Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, Int. J. Fatigue, 94, pp. 218–235, DOI: 10.1016/j.ijfatigue.2016.03.014. [24] Moussaoui, K., Rubio, W., Mousseigne, M., Sultan, T., Rezai, F. (2018). Materials Science & Engineering A E ff ects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties, Mater. Sci. Eng. A, 735(August), pp. 182–190, DOI: 10.1016/j.msea.2018.08.037. [25] Mower, T.M., Long, M.J. (2016). Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Mater. Sci. Eng. A, 651, pp. 198–213, DOI: 10.1016/j.msea.2015.10.068. [26] Xu, Z.W., Wang, Q., Wang, X.S., Tan, C.H., Guo, M.H., Gao, P.B. (2020). High cycle fatigue performance of AlSi10mg alloy produced by selective laser melting, Mech. Mater., 148, DOI: 10.1016/j.mechmat.2020.103499. [27] Masuo, H., Tanaka, Y., Morokoshi, S., Yagura, H., Uchida, T. (2018). In fl uence of defects , surface roughness and HIP on the fatigue strength of Ti- 6Al-4V manufactured by additive manufacturing, Int. J. Fatigue, 117(April), pp. 163–179, DOI: 10.1016/j.ijfatigue.2018.07.020.
295
Made with FlippingBook flipbook maker