Issue 57
E. Sgambitterra et alii, Frattura ed Integrità Strutturale, 57 (2021) 300-320; DOI: 10.3221/IGF-ESIS.57.22
2
x D y 2 / 2
r
(17)
2
The theoretical displacement fields, calculated from Eqn. (12), are illustrated in Fig. 2 in the form of contour maps.
Figure 2: Schematic depiction of a Brazilian disk subjected to a compression load P, together with the corresponding displacements along the x and y axis. Case study 3: displacement field of an axisymmetric component subjected to pressure and thermal load The displacement field of an axisymmetric component subjected to an external pressure P e , see Fig. 3, can be written as follows [56]:
T
11 21
v
v
1
1
ψ u U
12
P E E e
(18)
P
e
22
where
2
r
2 2 e e i r r r
cos
11
r r r r r r 2 2 2 2 2 i i
1 cos
12 e e
(19)
e
r
sin
21
2 2 e i r r r r r r r 2 2 2 2 e i e i
1 sin
22
where r e and r i are the external and inner radius, respectively, r and , are the polar coordinates referred to the axis of the component ( x 0 , y 0 ), see Fig. 3.
305
Made with FlippingBook Digital Publishing Software