Issue 55
S. Merdaci et alii, Frattura ed Integrità Strutturale, 55 (2021) 65-75; DOI: 10.3221/IGF-ESIS.55.05
h
/2
2
, , ij A B D ij
z z Q dz
, i j
1, ,
1, 2, 6
ij
ij
h
/2
h
/2
s
s
s
2
, B D H ,
( ), ( ), ( ) f z z f z f z Q dz
, i j
(12a)
1, 2, 6
ij
ij
ij
ij
h
/2
h
/2
s ij A
2
( ) g z Q dz
, i j
,
4, 5
ij
h
/2
h
3
E z
E z
( )
( )
n
1
n h 1
( )
2
( ) 11 n
s
s
Q
44 A A
g z dz
(12b)
,
2 1
55
2
1
n
Thus the balance equations associated with the newest shear deformation theory can be obtained,
x N N
xy
u
:
0
(13a)
x
y
y
xy N N
v
:
0
(13b)
x
y
b
b
2
2
M M
b x
2
M
xy
y
q
w
(13c)
:
2
0
b
2
2
x y
x
y
s
s
s
s
2
2
M M S S
s
2
M
xy
y
xz
yz
x
w
q
(13d)
:
2
0
s
2
2
x y
x
y
x
y
FG PLATES ANALYTICAL SOLUTIONS
O
n the side edges of the FG plate are placed the following easily endorsed boundary conditions:
b s b s w w v w w
N M M and x a 0 0,
(14a)
b
s
x
x
x
0
y
y
b s b s w w u w w
(14b)
0 N M M and y
b
0,
b
s
y
y
y
0
x x
The external force can be expressed as per the Navier solution:
1 1 m n
sin( )sin( ) mn x y
q x y
q
( , )
(15)
where λ = m π /a and μ = n π /b , « m » and « n » are mode numbers. Where q 0 represents the intensity of the load at the plate center. For the case of a sinusoidal distributed load, we have
Q q m n 0 , 11
1
(16)
69
Made with FlippingBook - professional solution for displaying marketing and sales documents online