PSI - Issue 54

Daria Pałgan et al. / Procedia Structural Integrity 54 (2024) 322 –331

330

9

Daria Pałgan et al./ Structural Integrity Procedia 00 (2023) 000 – 000

Enomoto, M., Cheng, L., Mizuno, H., Watanabe, Y., Omura, T., Sakai, J., Yokoyama, K., Suzuki, H., & Okuma, R. (2014). Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution. Metallurgical and Materials Transactions E, 1(4), 331 – 340. https://doi.org/10.1007/s40553-014-0034-5 Fan, L., Tu, Z., & Chan, S. H. (2021). Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 7, 8421 – 8446. https://doi.org/10.1016/j.egyr.2021.08.003 Hren, R., Vujanović, A., Van Fan, Y., Klemeš, J. J., Krajnc, D., & Čuček, L. (2023). Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renewable and Sustainable Energy Reviews, 173, 113113. https://doi.org/10.1016/j.rser.2022.113113 Kazum, O., & Bobby Kannan, M. (2017). Effect of cathodic hydrogen-charging current density on the hydrogen diffusivity in nanostructured bainitic steels. Materials Science and Technology, 33(13), 1548 – 1552. https://doi.org/10.1080/02670836.2017.1342944 K. Kiuchi, R.B. McLellan (1983), The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31 (7), 961 984. https://doi.org/10.1016/0001-6160(83)90192-X. Koyama, M., Akiyama, E., Sawaguchi, T., Ogawa, K., Kireeva, I. V., Chumlyakov, Y. I., & Tsuzaki, K. (2013). Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science, 75, 345 – 353. https://doi.org/10.1016/j.corsci.2013.06.018 Lee, H. W., Djukic, M. B., & Basaran, C. (2023). Modeling fatigue life and hydrogen embrittlement of bcc steel with unified mechanics theory. International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.02.110 Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., & Song, X. (2020). Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metallurgica Sinica (English Letters), 33(6), 759 – 773. https://doi.org/10.1007/s40195-020-01039-7 Lin, Y.-T., Yi, H. L., Chang, Z. Y., Lin, H.-C., & Yen, H.-W. (2021). Role of Vanadium Carbide in Hydrogen Embrittlement of Press-Hardened Steels: Strategy From 1500 to 2000 MPa. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.611390 Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46(17), 10548 – 10569. https://doi.org/10.1016/j.ijhydene.2020.12.123 Mine, Y., Koga, K., Takashima, K., & Horita, Z. (2016). Mechanical characterisation of microstructural evolution in 304 stainless steel subjected to high-pressure torsion with and without hydrogen pre-charging. Materials Science and Engineering: A, 661, 87 – 95. https://doi.org/10.1016/j.msea.2016.03.018 Öberg, S., Odenberger, M., & Johnsson, F. (2022). Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems. International Journal of Hydrogen Energy, 47(1), 624 – 644. https://doi.org/10.1016/j.ijhydene.2021.10.035 Pérez Escobar, D., Miñambres, C., Duprez, L., Verbeken, K., & Verhaege, M. (2011). Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corrosion Science, 53(10), 3166 – 3176. https://doi.org/10.1016/j.corsci.2011.05.060 Pérez Escobar, D., Verbeken, K., Duprez, L., & Verhaege, M. (2012). Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Materials Science and Engineering: A, 551, 50 – 58. https://doi.org/10.1016/j.msea.2012.04.078 Rasul, M. G., Hazrat, M. A., Sattar, M. A., Jahirul, M. I., & Shearer, M. J. (2022). The future of hydrogen: Challenges on production, storage and applications. Energy Conversion and Management, 272, 116326. https://doi.org/10.1016/j.enconman.2022.116326 San, C., & Somerday, M. B. P. (2012). Sandia report Technical Reference for Hydrogen Compatibility of Materials. http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online Silverstein, R., & Eliezer, D. (2017). Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels. Journal of Alloys and Compounds, 720, 451 – 459. https://doi.org/10.1016/j.jallcom.2017.05.286 Standard ISO 16573-1:2020 - Steel -- Measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels. (2020). https://standards.iteh.ai/catalog/standards/iso/9766488c-deed-412e-a2ee-1b99535616d9/iso-16573-1-2020 Sugiyama, S., Ohkubo, H., Takenaka, M., Ohsawa, K., Ansari, M. I., Tsukuda, N., & Kuramoto, E. (2000). The effect of electrical hydrogen charging on the strength of 316 stainless steel. Journal of Nuclear Materials, 283 – 287, 863 – 867. https://doi.org/10.1016/S0022-3115(00)00346-9 Tsuchida, Y. (2014). Analysis of Hydrogen Trapping by Gaussian Distribution for Normalized Carbon Steels. ISIJ International, 54(3), 644 – 649. https://doi.org/10.2355/isijinternational.54.644 Turnbull, A. (2015). Perspectives on hydrogen uptake, diffusion and trapping. International Journal of Hydrogen Energy, 40(47), 16961 – 16970. https://doi.org/10.1016/j.ijhydene.2015.06.147 Wang, B., Werner, K. V., Villa, M., Christiansen, T. L., & Somers, M. A. J. (2023). Phase Stability and Deformation Modes in Functionally Graded Metastable Austenitic Stainless Steel; A Novel Approach to Evaluate the Role of Nitrogen. Metallurgical and Materials Transactions A, 54(2), 590 – 604. https://doi.org/10.1007/s11661-022-06904-x Wasim, M., Djukic, M. B., & Ngo, T. D. (2021). Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel. Engineering Failure Analysis, 123. https://doi.org/10.1016/j.engfailanal.2021.105312

Made with FlippingBook. PDF to flipbook with ease