PSI - Issue 54
Paulo Mendes et al. / Procedia Structural Integrity 54 (2024) 340–353 Mendes et al. / Structural Integrity Procedia 00 (2023) 000–000
352
13
Aidibi, A., Babamohammadi, S., Fatnuzzi, N., Correia, J.A.F.O., Manuel, L., 2021. Stress concentration factor evaluation of o ff shore tubular kt joints based on analytical and numerical solutions: Comparative study. Practice Periodical on Structural Design and Construction 26. doi: https://doi.org/10.1061/(ASCE)SC.1943-5576.0000622 . Akyel, A., Kolstein, M., Bijlaard, F., 2018. Fatigue strength of repaired welded connections made of very high strength steels. Engineering Structures 161, 28 – 40. doi: https://doi.org/10.1016/j.engstruct.2018.01.023 . Arsic, D., Lazic, V., Nikolic, R.R., Aleksandrovic, S., Hadzima, B., Djordjevic, M., 2015. Optimal welding technology of high strength steel S690QL. Materials Science 51, 453–463. doi: https://doi.org/10.1007/s11003-015-0276-x . Bandara, C., Siriwardane, S., Dissanayake, U., Dissanayake, R., 2016. Full range S-N curves for fatigue life evaluation of steels using hardness measurements. International Journal of Fatigue 82, 325–331. doi: https://doi.org/10.1016/j.ijfatigue.2015.03.021 . Bhadeshia, H., Honeycombe, R., 2017. Steels: Microstructure and properties. Butterworth-Heinemann, Oxford, England. Chang, E., Dover, W., 1999. Prediction of stress distributions along the intersection of tubular Y and T-joints. International Journal of Fatigue 21, 361–381. doi: https://doi.org/10.1016/S0142-1123(98)00083-8 . Costa, J.D., Ferreira, J.A., Abreu, L.P., 2010. Fatigue behaviour of butt welded joints in a high strength steel, in: Procedia Engineering, pp. 697–705. doi: https://doi.org/10.1016/j.proeng.2010.03.075 . Dantas, R., Gouveia, M., G. A. Silva, F., Fiorentin, F., A. F. O. Correia, J., Lesiuk, G., de Jesus, A., 2023. Notch e ff ect in very high-cycle fatigue behaviour of a structural steel. International Journal of Fatigue , 107925doi: https://doi.org/10.1016/j.ijfatigue.2023.107925 . Dobosy, A., Luka´cs, J., 2019. Welding properties and fatigue resistance of S690QL high strength steels. Materials Science Forum 966, 29–36. doi: https://doi.org/10.4028/www.scientific.net/MSF.812.29 . European Committee for Standardization, 2018. EN10025-6: Hot-rolled products of structural steels - Part 6: Technical delivery conditions for weldable fine grain structural steels with improved notch toughness after welding. Ferreira, D.M., Silva Alves, A.d., Cruz Neto, R., Ferreira Martins, T., Brandi, S.D., 2018. A new approach to simulate hsla steel multipass welding through distributed point heat sources model. Metals - Open Access Metallurgy Journal 8, 18. doi: 10.3390/met8110951 . Guo, H., Wan, J., Liu, Y., Hao, J., 2018. Experimental study on fatigue performance of high strength steel welded joints. Thin-Walled Structures 131, 45–54. doi: https://doi.org/10.1016/j.tws.2018.06.023 . He, X., Yang, X., Zhang, G., Li, J., Hu, H., 2012. Quenching microstructure and properties of 300M ultra-high strength steel electron beam welded joints. Materials & Design 40, 386–391. doi: https://doi.org/10.1016/j.matdes.2012.04.010 . Heinemann, P., Isopescu, D.N., Maxineasa, S.G., 2021. Case studies on finite element modeling of welded joints. Bulletin of the Polytechnic Institute of Ias , i. Construction. Architecture Section 67, 79 – 94. doi: https://doi.org/10.2478/bipca-2021-0017 . International Organization for Standardization, 2011a. Destructive tests on welds in metallic materials - Hardness testing - Part 1: Hardness test on arc welded joints. International Organization for Standardization, 2011b. Destructive tests on welds in metallic materials - Hardness testing - Part 2: Microhardness testing of welded joints. International Organization for Standardization, 2015. Welding — Guidelines for a metallic materials grouping system. International Organization for Standardization, 2017a. Specification and qualification of welding procedures for metallic materials — Welding procedure test — Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys. International Organization for Standardization, 2017b. Welding consumables — Tubular cored electrodes for gas-shielded and non-gas-shielded metal arc welding of high strength steels — Classification. International Organization for Standardization, 2019. Specification and qualification of welding procedures for metallic materials - Welding procedure specification - Part 1: Arc welding. Karthik, S., Mahendramani, G., 2021. Fatigue failure analysis of fillet welded joints used in o ff shore structures using numerical methods. Materials Today: Proceedings 45, 120–122. doi: https://doi.org/10.1016/j.matpr.2020.10.107 . Konuma, S., Furukawa, T., 1989. Relationship between fatigue properties and hardness for high hardness steels tempered at several temperatures. Journal of the Society of Materials Science, Japan 38, 1128 – 1132. doi: https://doi.org/10.2472/jsms.38.1128 . Lahtinen, T., Vilac¸a, P., Infante, V., 2019. Fatigue behavior of MAG welds of thermo-mechanically processed 700MC ultra high strength steel. International Journal of Fatigue 126, 62–71. doi: https://doi.org/10.1016/j.ijfatigue.2019.04.034 . Lee, K.S., Song, J.H., 2006. Estimation methods for strain-life fatigue properties from hardness. International Journal of Fatigue 28, 386–400. doi: https://doi.org/10.1016/j.ijfatigue.2005.07.037 . Li, L., Mi, G., Zhang, X., Xiong, L., Zhu, Z., Wang, C., 2019. The influence of induction pre-heating on microstructure and mechanical properties of S690QL steel joints by laser welding. Optics & Laser Technology 119, 105606. doi: https://doi.org/10.1016/j.optlastec.2019. 105606 . Masuda, C., Nishijima, S., Tanaka, Y., 1986. Relationship between fatigue strength and hardness for high strength steels. Transactions of the Japan Society of Mechanical Engineers Series A 52, 847 – 852. doi: https://doi.org/10.1299/kikaia.52.847 . Mike Lord, G.J., 1999. E ff ect of interpass temperature on properties of high-strength weld metals. Svetsaren, a Welding Review 54. Micˇian, M., Fra´trik, M., Kaja´nek, D., 2021. Influence of welding parameters and filler material on the mechanical properties of HSLA steel S960MC welded joints. Metals 11. doi: https://doi.org/10.3390/met11020305 . Parkes, D., Xu, W., Westerbaan, D., Nayak, S., Zhou, Y., Goodwin, F., Bhole, S., Chen, D., 2013. Microstructure and fatigue properties of fiber laser welded dissimilar joints between high strength low alloy and dual-phase steels. Materials and Design 51. doi: https://doi.org/10. 1016/j.matdes.2013.04.076 . Partes, K., Schmidt, M., Gorny, S., 2020. Prediction of preheating temperatures for S690QL high strength steel using FEM-simulation for high power laser welding. Lasers in Manufacturing and Materials Processing 7. doi: https://doi.org/10.1007/s40516-020-00111-5 . Peng, Y., Wang, A., Xiao, H., Tian, Z., 2012. E ff ect of interpass temperature on microstructure and mechanical properties of weld metal of 690 MPa HSLA steel, in: Materials Science Forum, pp. 2246–2252. doi: https://doi.org/10.4028/www.scientific.net/MSF.706-709.2246 .
Made with FlippingBook. PDF to flipbook with ease