PSI - Issue 54
V.P. Matveenko et al. / Procedia Structural Integrity 54 (2024) 218–224 Matveenko V.P., Serovaev G.S., Kosheleva N.A., Galkina E.B../ Structural Integrity Procedia 00 (2023) 000 – 000
224
7
Acknowledgements The study was prepared in the framework of the program for the creation and development of the world-class scientific center «Supersonic» for 2020-2025 with the financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 075-15-2022-329 of April 21, 2022). References [1] T. Wu, G. Liu, S. Fu, F. Xing, Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure, Sensors. 20 (2020) 4517. https://doi.org/10.3390/s20164517. [2] H. Rocha, C. Semprimoschnig, J.P. Nunes, Sensors for process and structural health monitoring of aerospace composites: A review, Eng. Struct. 237 (2021) 112231. https://doi.org/10.1016/j.engstruct.2021.112231. [3] Y. Zheng, Z.-W. Zhu, W. Xiao, Q.-X. Deng, Review of fiber optic sensors in geotechnical health monitoring, Opt. Fiber Technol. 54 (2020) 102127. https://doi.org/10.1016/j.yofte.2019.102127. [4] F. Sales, F. Mota, L. Moura, G. Guimarães, A. Alexandria, Applications of Fiber Bragg Grating Sensors in the Industry, Int. J. Adv. Eng. Res. Sci. 6 (2019) 238 – 250. https://doi.org/10.22161/ijaers.612.21. [5] G. Serovaev, N. Kosheleva, The study of internal structure of woven glass and carbon fiber reinforced composite materials with embedded fiber-optic sensors, Frat. Ed Integrità Strutt. 14 (2019) 225 – 235. https://doi.org/10.3221/IGF-ESIS.51.18. [6] G.-S. Hwang, D.-W. Huang, C.-C. Ma, Numerical Study on Strain Measurements Using the Improved Bonding Fiber Bragg Grating, IEEE Sens. J. 10 (2010) 1012 – 1018. https://doi.org/10.1109/JSEN.2010.2042954. [7] A. Lamberti, S. Vanlanduit, B. De Pauw, F. Berghmans, Influence of Fiber Bragg Grating Spectrum Degradation on the Performance of Sensor Interrogation Algorithms, Sensors. 14 (2014) 24258 – 24277. https://doi.org/10.3390/s141224258. [8] D.H. Kang, S.O. Park, C.S. Hong, C.G. Kim, The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths, NDT E Int. 38 (2005) 712 – 718. https://doi.org/10.1016/j.ndteint.2005.04.006. [9] R. Di Sante, L. Donati, E. Troiani, P. Proli, Evaluation of bending strain measurements in a composite sailboat bowsprit with embedded fibre Bragg gratings, Measurement. 54 (2014) 106 – 117. https://doi.org/10.1016/j.measurement.2014.04.019. [10] W. Zhang, M. Zhang, X. Wang, Y. Zhao, B. Jin, W. Dai, The Analysis of FBG Central Wavelength Variation with Crack Propagation Based on a Self-Adaptive Multi-Peak Detection Algorithm, Sensors. 19 (2019) 1056. https://doi.org/10.3390/s19051056. [11] M. Kharshiduzzaman, A. Gianneo, A. Bernasconi, Experimental analysis of the response of fiber Bragg grating sensors under non uniform strain field in a twill woven composite, J. Compos. Mater. 53 (2019) 893 – 908. https://doi.org/10.1177/0021998318793183. [12] S. Zheng, N. Zhang, Y. Xia, H. Wang, Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification, Opt. Commun. 315 (2014) 338 – 346. https://doi.org/10.1016/j.optcom.2013.11.027.
Made with FlippingBook. PDF to flipbook with ease