PSI - Issue 54

Luís D.C. Ramalho et al. / Procedia Structural Integrity 54 (2024) 390–397 Lu´ıs D.C. Ramalho et al. / Structural Integrity Procedia 00 (2023) 000–000

397

8

Valente, J.P., Campilho, R.D., Marques, E.A., Machado, J.J., da Silva, L.F., 2019. Adhesive joint analysis under tensile impact loads by cohesive zone modelling. Composite Structures 222, 110894. URL: https://doi.org/10.1016/j.compstruct.2019.110894 , doi: 10.1016/j. compstruct.2019.110894 . Wang, J., Liu, G., 2002a. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Ap plied Mechanics and Engineering 191, 2611–2630. URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0037192730& partnerID=tZOtx3y1 , doi: 10.1016/S0045-7825(01)00419-4 . Wang, J.G., Liu, G.R., 2002b. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering 54, 1623–1648. doi: 10.1002/nme.489 . Xu, Y., Ke, Y., Ma, X., 2021. Finite Element Analysis of Stress Wave Propagation in Adhesive Joints under Low Speed Impact Tensile Loadings. Macromolecular Theory and Simulations 30, 1–11. doi: 10.1002/mats.202000066 . Yang, Z., Zhu, Z., Xia, Y., Yang, F., Sun, Y., Jiang, H., 2021. Modified cohesive zone model for soft adhesive layer considering rate dependence of intrinsic fracture energy. Engineering Fracture Mechanics 258, 108089. URL: https://doi.org/10.1016/j.engfracmech.2021. 108089 , doi: 10.1016/j.engfracmech.2021.108089 .

Made with FlippingBook. PDF to flipbook with ease