PSI - Issue 54

Lisa Claeys et al. / Procedia Structural Integrity 54 (2024) 250–255 Claeys/ Structural Integrity Procedia 00 (2023) 000 – 000

255

6

Acknowledgements

The authors would like to thank prof. Hauke Springer (RWTH Aachen University, MPIE Düsseldorf) for the supply of the HEA. Moreover, the FWO and special research fund (BOF) of Ghent University are acknowledged. FWO support was received via the junior research project grant number G069721N. BOF is acknowledged for the used equipment with grant number BOF15/BAS/062 and BOF20/BAS/121.

References

Miracle, D.B., Senkov, O.N., 2017. A critical review of high entropy alloys and related concepts, Acta Materialia 122, 448-511. Li, X., Yin, J., Zhang, J., Wang, Y., Song, X., Zhang, Y., Ren, X., 2022. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review. Journal of Materials Science & Technology 122, 20-32. Luo, H., Lu, W., Fang, X., Ponge, D., Li, Z., Raabe, D., 2018. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy, Materials Today 21, 1003-1009. Varvenne, C., Luque, A., Curtin, W. A., 2016. Theory of strengthening in fcc high entropy alloys, Acta Materialia 118, 164-176. Claeys, L., Depover, T., Verbeken, K., 2022. On the role of the stacking fault energy in the beneficial effect of aluminium on the hydrogen embrittlement sensitivity of twinning-induced plasticity (TWIP) steel. Materials Science and Engineering A855, 143873. Claeys, L., Cnockaert, V., Depover, T., De Graeve, I., Verbeken, K., 2020. Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach. Acta Materialia 186, 190-198. Correa Marques, S., Ventura Castilho, A., dos Santos, D. S., 2021. Effect of alloying elements on the hydrogen diffusion and trapping in high entropy alloys, Scripta Materialia 201, 113957. Ismer, L., Hickel, T., Neugebauer, J., 2010. Ab initio study of the solubility and kinetics of hydrogen in austenitic high Mn steels. Physical Review B 81, 094111. Pu, Z., Chen, Y., Dai, L. H., 2018. Strong resistance to hydrogen embrittlement of high-entropy alloy, Materials Science and Engineering A736, 156-166. Zhao, Y., Lee, D.-H., Seok, M.-Y., Lee, J.-A., Phaniraj, M.P., Suh, J.-Y., Ha, H.-Y., Kim J.-Y., Ramamurty, U., Jang, J.-I., 2017. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement, Scripta Materialia 135, 54-58. Martin, M., Fenske, J.,Liu, G.,Sofronis, P., Robertson, I., 2011. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Materialia 59, 1601-1606. Djukic, M., Bakic, G., Zeravcic, V., Sedmak, A., Rajicic, B., 2019. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Engineering Fracture Mechanics 216, 106528.

Made with FlippingBook. PDF to flipbook with ease