PSI - Issue 54

Margo Cauwels et al. / Procedia Structural Integrity 54 (2024) 233–240 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

240

8

Chatzidouros, E. V., Traidia, A., Devarapalli, R.S., Pantelis, D.I., Steriotis, T.A., Jouiad, M., 2019. Fracture toughness properties of HIC susceptible carbon steels in sour service conditions. Int. J. Hydrogen Energy 44, 22050 – 22063. https://doi.org/10.1016/j.ijhydene.2019.06.209 Chatzidouros, E. V, Papazoglou, V.J., Tsiourva, T.E., Pantelis, D.I., 2011. Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging. Int. J. Hydrogen Energy 36, 12626 – 12643. https://doi.org/10.1016/j.ijhydene.2011.06.140 Cravero, S., Ruggieri, C., 2007. Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance. Eng. Fract. Mech. 74, 2735 – 2757. https://doi.org/10.1016/j.engfracmech.2007.01.012 Elazzizi, A., Hadj Meliani, M., Khelil, A., Pluvinage, G., Matvienko, Y.G., 2015. The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement. Int. J. Hydrogen Energy 40, 2295 – 2302. https://doi.org/10.1016/j.ijhydene.2014.12.040 Fassina, P., Bolzoni, F., Fumagalli, G., Lazzari, L., Vergani, L., Sciuccati, A., 2012. Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels. Eng. Fract. Mech. 81, 43 – 55. https://doi.org/10.1016/j.engfracmech.2011.09.016 Laureys, A., Depover, T., Petrov, R., Verbeken, K., 2015. Characterization of hydrogen induced cracking in TRIP-assisted steels. Int. J. Hydrogen Energy 40, 16901 – 16912. https://doi.org/10.1016/j.ijhydene.2015.06.017 Li, Y., Gong, B., Li, X., Deng, C., Wang, D., 2018. Specimen thickness effect on the property of hydrogen embrittlement in single edge notch tension testing of high strength pipeline steel. Int. J. Hydrogen Energy 43, 15575 – 15585. https://doi.org/10.1016/j.ijhydene.2018.06.118 Nguyen, T.T., Tak, N., Park, J., Nahm, S.H., Beak, U.B., 2020. Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment. Int. J. Hydrogen Energy 45, 23739 – 23753. https://doi.org/10.1016/j.ijhydene.2020.06.199 Van Minnebruggen, K., Hertelé, S., Verstraete, M.A., De Waele, W., 2017. Crack growth characterization in single-edge notched tension testing by means of direct current potential drop measurement. Int. J. Press. Vessel. Pip. 156, 68 – 78. https://doi.org/10.1016/j.ijpvp.2017.06.009 Wang, R., 2009. Effects of hydrogen on the fracture toughness of a X70 pipeline steel. Corros. Sci. 51, 2803 – 2810. https://doi.org/10.1016/j.corsci.2009.07.013 Yang, Z., Xu, D.Q., Tronskar, J.P., 2009. Fracture toughness testing using sent specimens in a sour environment. Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE 6, 45 – 53. https://doi.org/10.1115/OMAE2009-79305

Made with FlippingBook. PDF to flipbook with ease