PSI - Issue 54
Jakub Gorski et al. / Procedia Structural Integrity 54 (2024) 264–270 J. Gorski et al. / Structural Integrity Procedia 00 (2023) 000–000
270
7
Acknowledgements
Jakub Gorski and Andrzej Klepka would like to acknowledge that this research was partly supported by AGH Uni versity of Science and Technology, Robotics and Mechatronics Department subsidy. Kajetan Dziedziech would like to acknowledge that this research was partly supported by the program “Excellence Initiative – research university” for the AGH University of Science and Technology.
References
Aymerich, F., Staszewski, W., 2010. Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro acoustic technique. Structural Health Monitoring: An International Journal 9, 541–553. doi: 10.1177/1475921710365433 . Chen, B.Y., Soh, S.K., Lee, H.P., Tay, T.E., Tan, V.B., 2016. A vibro-acoustic modulation method for the detection of delamination and kissing bond in composites. Journal of Composite Materials 50, 3089–3104. doi: 10.1177/0021998315615652 . Jiao, J., Zheng, L., Song, G., He, C., Wu, B., 2011. Vibro-acoustic modulation technique for micro-crack detection in pipeline. Seventh International Symposium on Precision Engineering Measurements and Instrumentation 8321, 83213X. doi: 10.1117/12.905550 . Karve, P., Miele, S., Neal, K., Mahadevan, S., Agarwal, V., Giannini, E.R., Kyslinger, P., 2020. Vibro-acoustic modulation and data fusion for lo calizing alkali–silica reaction–induced damage in concrete. Structural Health Monitoring 19, 1905–1923. doi: 10.1177/1475921720905509 . Klepka, A., Dziedziech, K., Spytek, J., Mro´wka, J., Go´rski, J., 2018. Experimental investigation of hysteretic sti ff ness related e ff ects in contact-type nonlinearity. Nonlinear Dynamics URL: http://link.springer.com/10.1007/s11071-018-4641-z , doi: 10.1007/ s11071-018-4641-z . Klepka, A., Staszewski, W., Jenal, R., Szwedo, M., Iwaniec, J., Uhl, T., 2012. Nonlinear acoustics for fatigue crack detection - experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring 11, 197–211. URL: http://shm.sagepub.com/cgi/doi/ 10.1177/1475921711414236 , doi: 10.1177/1475921711414236 . Li, N., Wang, F., Song, G., 2020. New entropy-based vibro-acoustic modulation method for metal fatigue crack detection: An exploratory study. Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.107075 . Pecorari, C., Solodov, I., 2006. Nonclassical nonlinear dynamics of solid surfaces in partial contact for nde applications. Universality of Nonclas sical Nonlinearity , 309–326doi: 10.1007/978-0-387-35851-2_19 . Pieczonka, L., Klepka, A., Martowicz, A., Staszewski, W.J., 2015. Nonlinear vibroacoustic wave modulations for structural damage detection: an overview. Optical Engineering doi: 10.1117/1.OE.55.1.011005 . Pieczonka, L., Zietek, L., Klepka, A., Staszewski, W.J., Aymerich, F., Uhl, T., 2018. Damage imaging in composites using nonlinear vibro-acoustic wave modulations. Structural Control and Health Monitoring doi: 10.1002/stc.2063 . Trojniar, T., Klepka, A., Pieczonka, L., Staszewski, W.J., 2014. Fatigue crack detection using nonlinear vibro-acoustic cross-modulations based on the luxemburg-gorky e ff ect. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring 9064, 90641F–90641F. doi: 10.1117/12.2046471 . Wang, F., Song, G., 2019. Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal. Mechanical Systems and Signal Processing 130, 349–360. URL: https://doi.org/10.1016/j.ymssp.2019.04.036 , doi: 10.1016/j.ymssp.2019.04.036 . Zaitsev, V.Y., Gusev, V., Castagne`de, B., 2002. Observation of the ”luxemburg-gorky e ff ect” for elastic waves, pp. 627–631. doi: 10.1016/ S0041-624X(02)00187-7 . Zhao, N., Huo, L., Song, G., 2020. A nonlinear ultrasonic method for real-time bolt looseness monitoring using pzt transducer–enabled vibro acoustic modulation. Journal of Intelligent Material Systems and Structures 31, 364–376. doi: 10.1177/1045389X19891534 .
Made with FlippingBook. PDF to flipbook with ease