PSI - Issue 54

Rahul Iyer Kumar et al. / Procedia Structural Integrity 54 (2024) 164–171 Iyer Kumar, De Waele / Structural Integrity Procedia 00 (2023) 000–000

171

8

Hashim, S.A., 1999. Adhesive bonding of thick steel adherends for marine structures. Marine Structures 12, 405–423. doi: 10.1016/ S0951-8339(99)00029-5 . Heide-Jørgensen, S., Budzik, M.K., 2017. Crack growth along heterogeneous interface during the DCB experiment. International Journal of Solids and Structures 120, 278–291. doi: 10.1016/J.IJSOLSTR.2017.05.013 . Interreg 2 Seas, . Enabling Qualication of Hybrid Structures for Lightweight and Safe Maritime Transport. URL: https://www.interreg2seas. eu/en/qualify . Iyer Kumar, R., Jaiswal, P., De Waele, W., 2021. Proceedings of the 8th Engineering Integrity Society International Conference on Durability Fatigue, pp. 444–461. URL: https://e-i-s.org.uk/fatigue-2021/ . Iyer Kumar, R., Jaiswal, P., De Waele, W., 2022. Fatigue damage and life evaluation of thick bi-material double strap joints for use in marine applications. Fatigue Fracture of Engineering Materials Structures 45, 2099–2111. URL: https://onlinelibrary. wiley.com/doi/full/10.1111/ffe.13709https://onlinelibrary.wiley.com/doi/abs/10.1111/ffe.13709https: //onlinelibrary.wiley.com/doi/10.1111/ffe.13709 , doi: 10.1111/FFE.13709 . Jaiswal, P.R., Kumar, R.I., De Waele, W., 2020. Unified methodology for characterisation of global fatigue damage evolution in adhesively bonded joints. Frattura ed Integrita` Strutturale 14, 26–37. URL: https://www.fracturae.com/index.php/fis/article/view/2698 , doi: 10.3221/IGF-ESIS.53.03 . Jethwa, J.K., Kinloch, A.J., 1997. The Fatigue and Durability Behaviour of Automotive Adhesives. Part I: Fracture Mechanics Tests. The Journal of Adhesion 61, 71–95. URL: https://www.tandfonline.com/doi/abs/10.1080/00218469708010517 , doi: 10.1080/ 00218469708010517 . Kanninen, M.F., 1973. An augmented double cantilever beam model for studying crack propagation and arrest. International Journal of Fracture 9, 83–92. URL: https://link.springer.com/article/10.1007/BF00035958 , doi: 10.1007/BF00035958/METRICS . Kinloch, A.J., Osiyemi, S.O., 1993. Predicting the Fatigue Life of Adhesively-Bonded Joints. The Journal of Adhesion 43, 79–90. URL: https://www.tandfonline.com/doi/abs/10.1080/00218469308026589 , doi: 10.1080/00218469308026589 . Lopes Fernandes, R., Teixeira de Freitas, S., Budzik, M.K., Poulis, J.A., Benedictus, R., 2019. From thin to extra-thick adhesive layer thicknesses: Fracture of bonded joints under mode I loading conditions. Engineering Fracture Mechanics 218, 106607. doi: 10.1016/J.ENGFRACMECH. 2019.106607 . Mall, S., Ramamurthy, G., 1989. E ff ect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints. International Journal of Adhesion and Adhesives 9, 33–37. doi: 10.1016/0143-7496(89)90144-9 . Marine Environmental Protection Committee, 2018. MEPC.304(72) - Initial IMO strategy on reduction of GHG emissions from ships. IMO publication 304, 1–11. Pascoe, J.A., Zavatta, N., Troiani, E., Alderliesten, R.C., 2020. The e ff ect of bond-line thickness on fatigue crack growth rate in adhesively bonded joints. Engineering Fracture Mechanics 229, 106959. doi: 10.1016/J.ENGFRACMECH.2020.106959 . Penado, F.E., 1993. A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhe sive Layer. http: // dx.doi.org / 10.1177 / 002199839302700403 27, 383–407. URL: https://journals.sagepub.com/doi/10.1177/ 002199839302700403 , doi: 10.1177/002199839302700403 . Pirondi, A., Nicoletto, G., 2004. Fatigue crack growth in bonded DCB specimens. Engineering Fracture Mechanics 71, 859–871. doi: 10.1016/ S0013-7944(03)00046-8 . Saleh, M., Venkatesan, P., Askarinejad, S., Katsivalis, I., Teixeira de Freitas, S., Waele, W.D., 2020. Tests to assess the sensitivity to the environment of the adhesive material properties and structural performance of the joint - at di ff erent scales. Technical Report. URL: https://www. interreg2seas.eu/en/download/file/fid/47814 . Sekiguchi, Y., Sato, C., 2021. E ff ect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints. Materials 14, 1723. URL: https://www.mdpi.com/1996-1944/14/7/1723/htmhttps://www.mdpi.com/1996-1944/14/7/1723 , doi: 10.3390/ ma14071723 . Zuo, P., Vassilopoulos, A.P., 2020. Review of fatigue of bulk structural adhesives and thick adhesive joints. International Materials Reviews doi: 10.1080/09506608.2020.1845110 .

Made with FlippingBook. PDF to flipbook with ease