PSI - Issue 54
Arvid Trapp et al. / Procedia Structural Integrity 54 (2024) 521–535
535
Arvid Trapp / Structural Integrity Procedia 00 (2023) 000–000
15
tion, so that the full set of damage accumulation rules can be applied. And certainly, it is desirable to develop more analytical solutions.
References
Awad, M., Khanna, R., 2015. E ffi cient learning machines. Apress, Berkeley, CA. doi: 10.1007/978-1-4302-5990-9 . Benasciutti, D., 2004. Fatigue analysis of random loadings. PhD Thesis. University of Ferrara. Benasciutti, D., Tovo, R., 2006. Fatigue life assessment in non-Gaussian random loadings. International Journal of Fatigue 28, 733–746. doi: 10. 1016/j.ijfatigue.2005.09.006 . Bishop, C.M., 1995. Neural networks for pattern recognition. 1st ed., Oxford University Press, Oxford. Bo¨hm, M., Kowalski, M., 2018. Fatigue life assessment algorithm modification in terms of taking into account the e ff ect of overloads in the frequency domain. AIP Conference Proceedings , 020003doi: 10.1063/1.5066393 . Braccesi, C., Cianetti, F., Lori, G., Pioli, D., 2009. The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress. International Journal of Fatigue 31, 766–775. doi: 10.1016/j.ijfatigue.2008.03.007 . Cianetti, F., Palmieri, M., Braccesi, C., Morettini, G., 2018. Correction formula approach to evaluate fatigue damage induced by non-Gaussian stress state. Procedia Structural Integrity 8, 390–398. doi: 10.1016/j.prostr.2017.12.039 . Dirlik, T., 1985. Application of computers in fatigue analysis. PhD Thesis. University of Warwick. Dirlik, T., Benasciutti, D., 2021. Dirlik and Tovo–Benasciutti spectral methods in vibration fatigue: A review with a historical perspective. Metals 11, 1333. doi: 10.3390/met11091333 . Dubey, S.R., Singh, S.K., Chaudhuri, B.B., 2022. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 503, 92–108. doi: 10.1016/j.neucom.2022.06.111 . Durodola, J.F., 2019. Artificial neural network for Gaussian and non-Gaussian random fatigue loading analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, 7525–7544. doi: 10.1177/0954406219878763 . Durodola, J.F., Li, N., Ramachandra, S., Thite, A.N., 2017. A pattern recognition artificial neural network method for random fatigue loading life prediction. International Journal of Fatigue 99, 55–67. doi: 10.1016/j.ijfatigue.2017.02.003 . Kang, B.H., Kim, H., Kim, Y., Kim, K.S., 2014. Development of fatigue damage model of wide-band process by artificial neural network. Proceedings of the ASME 2014 33rd International Conference on Ocean, O ff shore and Arctic Engineering doi: 10.1115/OMAE2014-23238 . Kim, Y., Kim, H., Ahn, I.G., 2016. A study on the fatigue damage model for Gaussian wideband process of two peaks by an artificial neural network. Ocean Engineering 111, 310–322. doi: 10.1016/j.oceaneng.2015.11.008 . Lutes, L.D., Sarkani, S., 2004. Random vibrations: Analysis of structural and mechanical systems. Butterworth Heinemann. Nikias, C.L., Petropulu, A.P., 1993. Higher-order spectra analysis: A nonlinear signal processing framework. Prentice Hall, Englewood Cli ff s, NJ. Palmieri, M., Cˇ esnik, M., Slavicˇ, J., Cianetti, F., Boltezˇar, M., 2017. Non-Gaussianity and non-stationarity in vibration fatigue. International Journal of Fatigue , 9–19doi: 10.1016/j.ijfatigue.2016.12.017 . Radaj, D., Vormwald, M., 2013. Advanced methods of fatigue assessment. Springer, Berlin. doi: 10.1007/978-3-642-30740-9 . Sarkani, S., Kihl, D.P., Beach, J.E., 1994. Fatigue of welded joints under narrowband non-Gaussian loadings. Probabilistic Engineering Mechanics 9, 179–190. doi: 10.1016/0266-8920(94)90003-5 . Slavicˇ, J., Boltezˇar, M., Mrsˇnik, M., Cesnik, M., Javh, J., 2020. Vibration fatigue by spectral methods: From structural dynamics to fatigue. Elsevier. Sun, H., Qiu, Y., Li, J., 2022. A novel artificial neural network model for wide-band random fatigue life prediction. International Journal of Fatigue 157, 106701. doi: 10.1016/j.ijfatigue.2021.106701 . TensorFlow Developers, 2023. TensorFlow. doi: 10.5281/zenodo.4724125 . Trapp, A., Hollweck, F., Wolfsteiner, P., 2022. On the transmission of non-Gaussian random loading through linear structures. Procedia Structural Integrity 37, 622–631. doi: 10.1016/j.prostr.2022.01.131 . Trapp, A., Wolfsteiner, P., 2021a. Fatigue assessment of non-stationary random loading in the frequency domain by a quasi-stationary Gaussian approximation. International Journal of Fatigue 148, 106214. doi: 10.1016/j.ijfatigue.2021.106214 . Trapp, A., Wolfsteiner, P., 2021b. Frequency-domain characterization of varying random vibration loading by a non-stationarity matrix. Interna tional Journal of Fatigue 146. doi: 10.1016/j.ijfatigue.2020.106115 . Trapp, A., Wolfsteiner, P., 2023a. Assessing non-stationary loading in structural dynamics: Python package for random time series analysis (pyRaTS). openSD 2023 - Proceedings , 139–154URL: http://lab.fs.uni-lj.si/ladisk/data/pdf/OpenSD2023_proceedings. pdf . Trapp, A., Wolfsteiner, P., 2023b. On the generation of cross-frequency correlation in higher-order spectra arising from non-stationary processes. Submitted for review . Winterstein, S.R., 1985. Non–normal responses and fatigue damage. Journal of Engineering Mechanics 111, 1291–1295. doi: 10.1061/(ASCE) 0733-9399(1985)111:10(1291) . Winterstein, S.R., 1988. Nonlinear vibration models for extremes and fatigue. Journal of Engineering Mechanics 114, 1772–1790. doi: 10.1061/ (ASCE)0733-9399(1988)114:10(1772) .
Made with FlippingBook. PDF to flipbook with ease