Issue 54
T. I. J. Brito et alii, Frattura ed Integrità Strutturale, 54 (2020) 1-20; DOI: 10.3221/IGF-ESIS.54.01
being [ F 0 ] b the elastic flexibility matrix, expressed as follows [38]:
         
          
2
2
2
b U M M M N       b U
U
b
2   M
i
j
i
i
i
2
2
2
U
U
U
  0 F
b
b
b
2
b
 
 
M M
M N
M
i
j
j
i
j
2
2
2
b U M N M N N         b U U
b
2
i
i
j
i
i
2
4 sin 3 2 cos      
b 
3sin cos 
b 
R U
2
sin cos 
b 
b 
1 2
1 2
b
b
b
b
b
b
b
2
2
2
b 
b 
M
EI
R AE
sin
sin
i
b
b 
b   
sin cos 
b 
2 U M M b
R
2sin
sin cos 
b 
b 
  
1 2
1 2
b
b
b
2
2
b 
b 
EI
R AE
sin
sin
i
j
b
2
2
5sin 5 cos    
b 
b 
b 
 
3 2 cos  
b 
R U
cos
2
1 2
b
b
b
b
b
b
2
 
M N
b 
EI
sin
i
i
  
b 
sin sin cos  
b 
b 
b 
cos
1 2
b
b
2
b 
AE
sin
b b R U  
sin cos 
b 
2
in cos 
b 
b 
s
1 2
1 2
b
b j
b
2
2
2
b 
b 
M
EI
R AE
sin
sin
b
2
sin R U 
 
b 
b 
b   
sin cos 
b 
2
cos
1 2
b
b
b
b
2
 
M N
b 
sin sin sin cos EI  
j
i
  
b 
b 
b 
b 
cos
1 2
b
b
2
b 
AE
sin
(16)
3 R U 
2
b 
b 
b 
b 
b 
 
2 3sin cos  
b 
3sin
cos
cos
2
b
b
b
b
2
2
b   b
N
sin sin sin cos EI  
i
b   R
  
b 
b 
b 
c
os
b
b
2
b 
AE
sin
Deformation equivalence hypothesis For the sake of simplicity, consider initially a uniaxial problem where a damaged straight bar is axially loaded. By definition, the damage variable ω represents the micro-cracks density [11]. Then, such bar resists to the axial force by means of the effective stress i.e. the Cauchy stress σ divided by (1 – ω ). The following expression, named strain equivalence hypothesis [11], is given by substituting the effective stress in the Hooke’s law:   1 p E           (17) where E is the Young’s modulus, ε is the total strain and ε p is the plastic strain. The previous relation can be rewritten as follows:
p
p e        d
p
   
(18)
E E
E
1
1
6
Made with FlippingBook - Online catalogs