Issue 54

A. Moslemi Petrudi et alii, Frattura ed Integrità Strutturale, 54 (2020) 226-248; DOI: 10.3221/IGF-ESIS.54.17

[2] Fellows, N. A. and Barton, P. C. . (1999). Development of impact model for ceramic-faced semi-infinite armor, International Journal of Impact Engineering, 22(8), pp. 793-811. DOI: 10.1016/S0734-743X(99)00017-2. [3] Shokrieh, M. M. and Javadpour, G. H. (2008). Penetration analysis of a projectile in ceramic composite armor, Composite Structures, 82(2), pp. 269-276. DOI: 10.1016/j.compstruct.2007.01.023. [4] Florence, A. L. and Ahrens, T. J. (1967). Interaction of projectiles and composite armor. https://apps.dtic.mil/docs/citations/AD0652726. [5] Zhang, X., Serjouei, A. and Sridhar, I. (2017). Criterion for interface defeat to penetration transition of long rod projectile impact on ceramic armor, Thin-Walled Structures. DOI: 10.1016/j.tws.2017.04.016. [6] Yi, R.-c., Yin, L.-k., Wang, J.-r., Chen, Z.-g. and Hu, D.-q. (2017). Study on the performance of ceramic composite projectile penetrating the ceramic composite target, Defence Technology, 13(4), pp. 295-299. DOI: 10.1016/j.dt.2017.05.009. [7] Brown, L. B., et al. (2017). Computational and Split-Hopkinson Pressure-Bar studies on the effect of the jacket during penetration of an AK47 bullet into ceramic armor . Materials & Design 119, pp. 47-53. DOI: 10.1016/j.matdes.2017.01.062. [8] Das, S., Ronan, W., Wadley, H. N. G. and Deshpande, V. S. (2018). Penetration of confined ceramics targets, Extreme Mechanics Letters, 18, pp. 45-57. DOI: 10.1016/j.eml.2017.11.001. [9] Savio, S. G. and Madhu, V. (2018). Ballistic performance evaluation of ceramic tiles for projectile velocity against hard steel projectile using the DOP test," International Journal of Impact Engineering. DOI: 10.1016/j.ijimpeng.2017.11.020. [10] Moslemi Petrudi, A., Vahedi, Kh., Kamyab, M.H., Moslemi Petrudi, M.A. (2019). Numerical and Experimental Study of Oblique Penetration of Blunt Projectile into Ceramic-Aluminum Target. Modares Mechanical Engineering. https://mme.modares.ac.ir/article-15-20854-en.html. [11] Xu, H. and Wen, H. M. (2016). A computational constitutive model for concrete subjected to dynamic loadings, International Journal of Impact Engineering, 91, pp. 116-125. DOI: 10.1016/j.ijimpeng.2016.01.003. [12] Forrestal, M. J., Tzou, D. Y., Askari, E. and Long, D. B. (1995). Penetration into ductile metal targets with rigid spherical- nose rods, International Journal of Impact Engineering, 16(5), pp. 699-710. DOI: 10.1016/0734-743X(95)00005-U. [13] Wang, B., Lu, G. and Lim, M. K. (1995). Experimental and numerical analysis of the response of aluminum oxide tiles to impact loading, Journal of Materials Processing Technology, 51(1), pp. 321-345. DOI: 10.1016/0924-0136(94)01604-Y. [14] Spigarelli, S. and Sandström, R. (2018). Basic creep modeling of aluminum, Materials Science and Engineering: A, 711, pp. 343-349. DOI: 10.1016/j.msea.2017.11.053. [15] Goh, W. L., Zheng, Y., Yuan, J. and Ng, K. W. (2017). Effects of the hardness of steel on ceramic armor module against long rod impact, International Journal of Impact Engineering, 109. DOI: 10.1016/j.ijimpeng.2017.08.004. [16] Wei, G. and Zhang, W. (2014). Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation, Journal of Physics: Conference Series, 500(11), p. 112065. DOI: 10.1088/1742-6596/500/11/112065. [17] Muñoz-Torrero, D. et al. (2018). Investigation of different anode materials for aluminum rechargeable batteries, Journal of Power Sources, 374, pp. 77-83. DOI: 10.1016/j.jpowsour.2017.11.032. [18] Wang, X. and Shi, J. (2013). Validation of Johnson-Cook plasticity and damage using impact experiment. International Journal of Impact Engineering, 60, pp. 67-75 DOI: 10.1016/j.ijimpeng.2013.04.010. [19] Senthil, K., Iqbal, M. A., Bhargava, P. and Gupta, N. K. (2017). Experimental and Numerical Studies on Mild Steel Plates against 7.62 API Projectiles, Procedia Engineering, 173, pp. 369-374. DOI: 10.1016/j.proeng.2016.12.032. [20] Venkatesan, J., Iqbal, M. A. and Madhu, V. (2017). Ballistic Performance of Bilayer Alumina/Aluminum and Silicon Carbide/Aluminum Armors, Procedia Engineering, 173, pp. 671-678. DOI: 10.1016/j.proeng.2016.12.141. [21] Wang, Q., Zhang, H., Cai, H., Fan, Q., Guoju, L., and Mu, X. (2017). Simulation analysis of co-continuous ceramic composite dynamic mechanical performance and optimization design. DOI: 10.1016/j.commatsci.2016.12.009. [22] Corbett, G. G., Reid, S. R. and Johnson, W. (1996). Impact loading of plates and shells by free-flying projectiles: A review," International Journal of Impact Engineering, 18(2). DOI: 10.1016/0734-743X(95)00023-4.

247

Made with FlippingBook Ebook Creator