Issue 54

M. Belaïd et alii, Frattura ed Integrità Strutturale, 54 (2020) 202-210; DOI: 10.3221/IGF-ESIS.54.15

and the crack length variations are important factors influencing the distribution function of (J/Je). The uncertainty in these parameters has a significant effect on increasing the probability of failure of pipe and reducing the durability of structure.

R EFERENCES

[1] Kim, Y.J. Shim, D.J. (2005), Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems, Int. J. Pres. Ves. Pip. 82, pp. 687–699. DOI:10.1016/j.ijpvp.2005.03.007. [2] Kim, Y.Jae. Kim, J.S. Park, Y.J. Kim, Y.J. (2004), Elastic-plastic fracture mechanics method for finite internal axial surface cracks in cylinders, Eng. Fract. Mech. 71, pp. 925–944. DOI:10.1016/S0013-7944(03)00159-0. [3] Mechab, B., Serier, B., Bachir Bouiadjra, B., Kaddouri, K., Feaugas, X. (2011), Linear and non-linear analyses for semi- elliptical surface cracks in pipes under bending, Int. J. Pres. Ves. Pip. 88, pp. 57–63. DOI: 10.1016/j. ijpvp. 2010.11.001. [4] Chapuliot, S. (2000), K Formula for pipes with a semi-elliptical longitudinal or circumferential, internal or external surface crack, In: CEA Report CEA-R-5900. CEA/Saclay, France. [5] Available at: https://inis.iaea.org/collection /NCLCollectionStore/_Public/31/058/31058406.pdf [6] Marie, S., Chapuliot, S., Kayser, Y., Lacire, M.H, Drubay, B., Barthelet, B., et al. (2007), French RSE-M and RCC-MR code appendices for flaw analysis: presentation of the fracture parameters calculation – part V: elements of validation. Int. J. Pres. Ves. Pip. 84, pp. 687–696. DOI:10.1016/j.ijpvp.2007.05.007. [7] Raju, I.S., Newman, Jr. (1982), Stress-intensity factors for internal and external surface cracks in cylindrical vessels, J Press Vessel Technol, ASME Trans 104(4), pp. 293–299. DOI:10.1115/1.3264220. [8] Bach, M. X., Wang.(2013), Constraint-based fracture mechanics analysis of cylinders with internal circumferential cracks, Struct. Eng. Mech. 47(1), pp. 131–147. DOI:10.12989/sem.2013.47.1.131. [9] Staat, M., Vu, D.K. 2013), Limit analysis of flaws in pressurized pipes and cylindrical vessels, Part II: Circumferential defects. Eng. Fract. Mech. 97, pp. 314–333. DOI:10.1016/j.engfracmech.2012.05.017. [10] Chattopadhyay, J., Dutta,B.K., Vaze, K.K.(2014), Development of new correlations for improved integrity assessment of pipes and pipe bends, Nucl .Eng. Des, 269, pp. 108–115. DOI:10.1016/j.nucengdes.2013.08.015. [11] Lee, S.M., Chang, Y.S., Choi , J.B., Kim ,Y.J. (2006). Failure probability assessment of wall- thinned nuclear pipes using probabilistic fracture mechanics, Nucl. Eng. Des, 236, pp. 350-358. DOI:10.1016 /j.nucengdes.2005. 09.008. [12] R6 (2001). Assessment of the Integrity of Structures Containing Defects, Revision 4. British Energy Generation Ltd, Gloucester. [13] Qian, G., Niffenegger, M., Karanki D.R., Li, S. (2013). Probabilistic leak before- break analysis with correlated input parameters, Nucl. Eng. Des. 254, pp. 266–271. DOI: 10.1016/S0308-0161(96)00034-8. [14] Tee, K.F., Khan, L.R., Chen, H.P. (2013). Probabilistic failure analysis of underground flexible pipes, Struct. Eng. Mech. 47(2), pp. 167–183. DOI: 10.12989/sem.2013.47.2.167. [15] Rahman, S. (1995). A stochastic model for elastic-plastic fracture analysis of circumferential through-wall-cracked pipes subject to bending, Eng. Fract. Mech. 52, pp. 265–288. DOI:10.1016/0013-7944(95)00018-Q. [16] Rahman, S. (2000). Probabilistic elastic-plastic fracture analysis of circumferentially cracked pipes with finite-length surface flaws, Nucl. Eng. Des. 195, pp. 239–260. DOI:10.1016/S0029-5493(99)00214-9. [17] Cizelj, L., Mavko, B., Riesch, Oppermann, H. (1994). Application of first and second order reliability n methods in the safety assessment of cracked steam generator tubing, Nucl. Eng Des, 147, pp. 359-368. DOI: 10.1016/0029-5493(94)90218-6. [18] Sandvik, A., Østby, E., Thaulow, C. (2006). Probabilistic fracture assessment of surface cracked pipes using strain-based approach, Eng. Fract. Mech. 73, pp. 1491–1509. DOI: 10.1016/j.engfracmech.2006.01.026. [19] Rahman, S. (1997). Probabilistic fracture analysis of pipes with circumferential flaws, Int. J. Pres. Ves. Pip. 70, pp. 223– 236. DOI: 10.1016/S0308-0161(96)00034-8. [20] ABAQUS (1998), ABAQUS Standard/User’s Manual, Version 5.8-1. Hibbit Karlsson & Sorensen, Inc., Pawtucket, RI, USA. [21] Kim, Y.J., Kim, J.S., Lee, Y.Z., Kim, Y.J. (2002). Non-linear fracture mechanics analyses of part circumferential surface cracked pipes, Int. J. Fract., 116, pp. 347–375. DOI: 10.1023/A:1020779611803. [22] Peng, J., Zhou, C.Y., Xue, J.L., Dai, Q., He, X.H. (2011). Safety assessment of pipes with multiple local wall thinning defects under pressure and bending moment, Nucl. Eng. Des, 241, pp. 2758–2765. DOI: 10.1016/j.nucengdes.2011.06.030.

209

Made with FlippingBook Ebook Creator