PSI - Issue 53
A. Teixeira et al. / Procedia Structural Integrity 53 (2024) 352–366 Author name / Structural Integrity Procedia 00 (2019) 000–000
366
15
Tools under Dry Conditions. Metals , 8 (3), 192. https://doi.org/10.3390/met8030192 De Bartolomeis, A., Newman, S. T., Jawahir, I. S., Biermann, D., & Shokrani, A. (2021). Future research directions in the machining of Inconel 718. Journal of Materials Processing Technology , 297 , 117260. https://doi.org/10.1016/j.jmatprotec.2021.117260 Dudzinski, D., Devillez, A., Moufki, A., Larrouquère, D., Zerrouki, V., & Vigneau, J. (2004). A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture , 44 (4), 439–456. https://doi.org/10.1016/S0890-6955(03)00159-7 Grzesik, W., Nies ł ony, P., Habrat, W., Sieniawski, J., & Laskowski, P. (2018). Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribology International , 118 , 337–346. https://doi.org/10.1016/j.triboint.2017.10.005 Hong, S. J., Chen, W. P., & Wang, T. W. (2001). A diffraction study of the γ″ phase in INCONEL 718 superalloy. Metallurgical and Materials Transactions A , 32 (8), 1887–1901. https://doi.org/10.1007/s11661-001-0002-4 Hosseini, E., & Popovich, V. A. (2019). A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing , 30 , 100877. https://doi.org/10.1016/j.addma.2019.100877 Hua, Y., & Liu, Z. (2018). Effects of cutting parameters and tool nose radius on surface roughness and work hardening during dry turning Inconel 718. The International Journal of Advanced Manufacturing Technology , 96 (5–8), 2421–2430. https://doi.org/10.1007/s00170-018-1721-7 Kumar, M. S., Reddy, S. R., & Vasu, V. (2017). A 3-D Simulation and Experimental Study of Cutting Forces in Turning Inconel-718. Materials Today: Proceedings , 4 (9), 9942–9945. https://doi.org/10.1016/j.matpr.2017.06.298 Matos, F., Silva, T. E. F., Marques, F., Figueiredo, D., Rosa, P. A. R., & de Jesus, A. M. P. (2023). Machinability assessment of Inconel 718 turning using PCBN cutting tools. Procedia CIRP , 117 , 468–473. https://doi.org/10.1016/j.procir.2023.03.079 Paturi, U. M. R., Methuku, S., Siripragada, S. S., Sangishetty, Y., & Gunda, R. K. (2021). Finite element simulations of machinability parameters in turning of Inconel 718. Materials Today: Proceedings , 38 , 2658–2663. https://doi.org/10.1016/j.matpr.2020.08.275 Pedroso, A. F. V., Sousa, V. F. C., Sebbe, N. P. V., Silva, F. J. G., Campilho, R. D. S. G., Sales-Contini, R. C. M., & Jesus, A. M. P. (2023). A Comprehensive Review on the Conventional and Non-Conventional Machining and Tool-Wear Mechanisms of INCONEL®. Metals , 13 (3), 585. https://doi.org/10.3390/met13030585 Pedroso, A. F. V., Sousa, V. F. C., Sebbe, N. P. V., Silva, F. J. G., Campilho, R. D. S. G., Sales-Contini, R. C. M., & Nogueira, F. R. (2024). A Review of INCONEL® Alloy’s Non-conventional Machining Processes (pp. 773–783). https://doi.org/10.1007/978-3-031-38241-3_86 Polvorosa, R., Suárez, A., de Lacalle, L. N. L., Cerrillo, I., Wretland, A., & Veiga, F. (2017). Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes , 26 , 44–56. https://doi.org/10.1016/j.jmapro.2017.01.012 Rajashekhar Reddy, S., Kumar, M. S., & Vasu, V. (2017). Temperature study in Turning Inconel-718: 3D Simulation and Experimentation. Materials Today: Proceedings , 4 (9), 9946–9950. https://doi.org/10.1016/j.matpr.2017.06.299 Ribeiro da Silva, L. R., Rodrigues Campos, F. dos A., Sales, W. F., & Machado, A. R. (2021). Evaluation of the tool wear in the turning process of INCONEL 718 using PCD tools. Procedia Manufacturing , 53 , 276–285. https://doi.org/10.1016/j.promfg.2021.06.079 Schmitz, T. L., & Smith, K. S. (2019). Machining Dynamics . Springer International Publishing. https://doi.org/10.1007/978-3-319-93707-6 Sebbe, N. P. V., Fernandes, F., Silva, F. J. G., Sousa, V. F. C., Sales-Contini, R. C. M., Campilho, R. D. S. G., & Pedroso, A. F. V. (2024). Wear Behavior Analysis of TiN/TiAlN Coated Tools in Milling of Inconel 718 (pp. 784–795). https://doi.org/10.1007/978-3-031-38241-3_87 Silva, T. E. F., Gregório, A. V. L., de Jesus, A. M. P., & Rosa, P. A. R. (2021). An Efficient Methodology towards Mechanical Characterization and Modelling of 18Ni300 AMed Steel in Extreme Loading and Temperature Conditions for Metal Cutting Applications. Journal of Manufacturing and Materials Processing , 5 (3), 83. https://doi.org/10.3390/jmmp5030083 Sivaraman, V., Sankaran, S., & Vijayaraghavan, L. (2012). The Effect of Cutting Parameters on Cutting Force During Turning Multiphase Microalloyed Steel. Procedia CIRP , 4 , 157–160. https://doi.org/10.1016/j.procir.2012.10.028 Sousa, V. F. C., Da Silva, F. J. G., Pinto, G. F., Baptista, A., & Alexandre, R. (2021). Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals , 11 (2), 260. https://doi.org/10.3390/met11020260 Sousa, V. F. C., Fernandes, F., Silva, F. J. G., Costa, R. D. F. S., Sebbe, N., & Sales-Contini, R. C. M. (2023). Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718. Metals , 13 (4), 684. https://doi.org/10.3390/met13040684 Sousa, V. F. C., & Silva, F. J. G. (2020). Recent Advances on Coated Milling Tool Technology—A Comprehensive Review. Coatings , 10 (3), 235. https://doi.org/10.3390/coatings10030235 Sousa, V. F. C., Silva, F. J. G., Alexandre, R., Fecheira, J. S., & Silva, F. P. N. (2021). Study of the wear behaviour of TiAlSiN and TiAlN PVD coated tools on milling operations of pre-hardened tool steel. Wear , 476 , 203695. https://doi.org/10.1016/j.wear.2021.203695 Sousa, V. F. C., Silva, F. J. G., Fecheira, J. S., Lopes, H. M., Martinho, R. P., Casais, R. B., & Ferreira, L. P. (2020). Cutting Forces Assessment in CNC Machining Processes: A Critical Review. Sensors , 20 (16), 4536. https://doi.org/10.3390/s20164536 Thakur, A., & Gangopadhyay, S. (2016). State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools and Manufacture , 100 , 25–54. https://doi.org/10.1016/j.ijmachtools.2015.10.001 Thakur, D. G., Ramamoorthy, B., & Vijayaraghavan, L. (2009). Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials & Design , 30 (5), 1718–1725. https://doi.org/10.1016/j.matdes.2008.07.011 Thrinadh, J., Mohapatra, A., Datta, S., & Masanta, M. (2020). Machining behavior of Inconel 718 superalloy: Effects of cutting speed and depth of cut. Materials Today: Proceedings , 26 , 200–208. https://doi.org/10.1016/j.matpr.2019.10.128 Toubhans, B., Fromentin, G., Viprey, F., Karaouni, H., & Dorlin, T. (2020). Machinability of inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity. Journal of Materials Processing Technology , 285 , 116809. https://doi.org/10.1016/j.jmatprotec.2020.116809 Wang, B., & Liu, Z. (2018). Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. The International Journal of Advanced Manufacturing Technology , 98 (5–8), 1925–1975. https://doi.org/10.1007/s00170-018-2314-1 Yadav, R. K., Abhishek, K., & Mahapatra, S. S. (2015). A simulation approach for estimating flank wear and material removal rate in turning of Inconel 718. Simulation Modelling Practice and Theory , 52 , 1–14. https://doi.org/10.1016/j.simpat.2014.12.004
Made with FlippingBook Ebook Creator