PSI - Issue 53
Francesco Collini et al. / Procedia Structural Integrity 53 (2024) 74–80
77
4
Author name / Structural Integrity Procedia 00 (2023) 000–000
∆ σ g
0.5
10
e 3 e 2 e 1
Plain strain, ν =0 . 3
e i
c w
R c
Fillet radius neglected
0
0
− 1
0
1
0.5
Load ratio , R
γ 3 γ 2 γ 1
γ i =1 − λ i
2
1+ R
, − 1 ≤ R ≤ 0
2 α
2 a
(1 − R )2
c w ( R ) =
2
1 − R
, 0 (1 − R )2 0 0 90 180 V-notch opening angle , 2 α [ ◦ deg] ∆ σ g Fig. 2: SED reference system; the functions e i (2 α ) and γ i (2 α ) are approximated with the equations provided in Visentin et al. (2022). • c w is a coe ffi cient accounting for the mean stress e ff ect; • e i , i = I , II , III are dimensionless coe ffi cients relevant to opening, sliding, and tearing local stresses, respectively, dependent on the V-notch opening angle 2 α and on Poisson’s ratio ν ; • E is the elastic modulus of the material; • γ i = 1 − λ i , i = I , II , III are the stress singularity exponents relevant to opening, sliding, and tearing modes respectively; λ i , i = I , II , III are the first eigenvalues of Williams’ Equation for mode I, II, and III, respectively; • K v i , i = I , II , III are the Notch Stress Intensity Factors (N-SIFs), relevant to opening, sliding, and tearing loading modes, respectively, and can be calculated with the engineering formula Atzori et al. (2005): i = √ πα γ i K v · a γ i · σ i = I , II , III (2) g , Let: ∆ w th be the range of averaged SED at threshold conditions in the structural volume and ∆ σ g , th be the threshold range of the gross nominal stress; by substituting Equation 2 into Equation 1, a relationship between ∆ w th , the stress raiser size a and the fatigue limit ∆ σ g , th can be obtained: √ πα γ i · a e i E 2 3 i = 1 γ i · ∆ σ g , th ∆ w th = c w · (3) R γ i c from which the fatigue limit in terms of the range of the nominal stress ∆ σ g , th can be determined as: 2 γ 1 + γ 2 + γ 3 c e 2 α γ 2 a ∆ w th E · R (4) ∆ σ g , th = √ π c w R e 1 α γ 1 a γ 1 γ 2 e 3 α γ 3 a , ∆ K v γ 3 2 2 2( γ 2 + γ 3 ) c 2( γ 3 + γ 1 ) c 2( γ 1 + γ 2 ) c + R + R th , eq = ∆ w th E · R ∆ K v γ 1 + γ 2 + γ 3 c th , eq √ c w (5) √ π R ∆ K v th , eq √ c w π · a v = 1 γ i γ i a , i = 1 , 2 , 3 2( γ 2 + γ 3 ) c 2( γ 3 + γ 1 ) c 2( γ 1 + γ 2 ) c 2 γ 1 e ff , 1 2 γ 2 e ff , 2 2 γ 3 e ff , 3 a e ff , i = α e 1 · a + R e 2 · a + R e 3 · a , 3 i = 1 i = 1 , 2 , 3 i j k ( γ j + γ k ) R 2 c 2 γ i e ff , i a v (6) · e i · a , = eq = eq
Made with FlippingBook Ebook Creator