PSI - Issue 53
Francesco Collini et al. / Procedia Structural Integrity 53 (2024) 74–80
77
4
Author name / Structural Integrity Procedia 00 (2023) 000–000
∆ σ g
0.5
10
e 3 e 2 e 1
Plain strain, ν =0 . 3
e i
c w
R c
Fillet radius neglected
0
0
− 1
0
1
0.5
Load ratio , R
γ 3 γ 2 γ 1
γ i =1 − λ i
2
1+ R
, − 1 ≤ R ≤ 0
2 α
2 a
(1 − R )2
c w ( R ) =
2
1 − R
, 0
(1 − R )2
0
0
90
180
V-notch opening angle , 2 α [ ◦ deg]
∆ σ g
Fig. 2: SED reference system; the functions e i (2 α ) and γ i (2 α ) are approximated with the equations provided in Visentin et al. (2022).
• c w is a coe ffi cient accounting for the mean stress e ff ect; • e i , i = I , II , III are dimensionless coe ffi cients relevant to opening, sliding, and tearing local stresses, respectively, dependent on the V-notch opening angle 2 α and on Poisson’s ratio ν ; • E is the elastic modulus of the material; • γ i = 1 − λ i , i = I , II , III are the stress singularity exponents relevant to opening, sliding, and tearing modes respectively; λ i , i = I , II , III are the first eigenvalues of Williams’ Equation for mode I, II, and III, respectively; • K v i , i = I , II , III are the Notch Stress Intensity Factors (N-SIFs), relevant to opening, sliding, and tearing loading modes, respectively, and can be calculated with the engineering formula Atzori et al. (2005):
i = √ πα γ i
K v
· a γ i · σ
i = I , II , III
(2)
g ,
Let: ∆ w th be the range of averaged SED at threshold conditions in the structural volume and ∆ σ g , th be the threshold range of the gross nominal stress; by substituting Equation 2 into Equation 1, a relationship between ∆ w th , the stress raiser size a and the fatigue limit ∆ σ g , th can be obtained:
√ πα γ i · a
e i E
2
3 i = 1
γ i · ∆ σ
g , th
∆ w th = c w ·
(3)
R γ i c
from which the fatigue limit in terms of the range of the nominal stress ∆ σ g , th can be determined as:
2
γ 1 + γ 2 + γ 3 c e 2 α γ 2 a
∆ w th E · R
(4)
∆ σ g , th =
√ π c w R
e 1 α γ 1 a
γ 1
γ 2
e 3 α γ 3 a , ∆ K v γ 3 2
2
2( γ 2 + γ 3 ) c
2( γ 3 + γ 1 ) c
2( γ 1 + γ 2 ) c
+ R
+ R
th , eq = ∆ w th E · R
∆ K v
γ 1 + γ 2 + γ 3 c
th , eq √ c w
(5)
√ π R ∆ K v th , eq √ c w π · a v
=
1 γ i γ i a , i = 1 , 2 , 3
2( γ 2 + γ 3 ) c
2( γ 3 + γ 1 ) c
2( γ 1 + γ 2 ) c
2 γ 1 e ff , 1
2 γ 2 e ff , 2
2 γ 3 e ff , 3
a e ff , i = α
e 1 · a
+ R
e 2 · a
+ R
e 3 · a
,
3 i = 1
i = 1 , 2 , 3 i j k
( γ j + γ k )
R 2 c
2 γ i e ff , i
a v
(6)
· e i · a
,
=
eq =
eq
Made with FlippingBook Ebook Creator