PSI - Issue 53

ScienceDirect Structural Integrity Procedia 00 (2022) 000 – 000 Structural Integrity Procedia 00 (2022) 000 – 000 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

Procedia Structural Integrity 53 (2024) 89–96

Third European Conference on the Structural Integrity of Additively Manufactures Materials (ESIAM23) The influence of layer height in the orthotropic elastic properties of Third European Conference on the Structural Integrity of Additively Manufactures Materials (ESIAM23) The influence of layer height in the orthotropic elastic properties of

PLA material obtained by additive processes Luís Gonçalves a , Gonçalo Couto a , Armando Ramalho a,b, * a Polytechnic Institute of Castelo Branco, 6000-767, Castelo Branco, Portugal b CEMMPRE, University of Coimbra, 3030-790, Coimbra, Portugal PLA material obtained by additive processes Luís Gonçalves a , Gonçalo Couto a , Armando Ramalho a,b, * a Polytechnic Institute of Castelo Branco, 6000-767, Castelo Branco, Portugal b CEMMPRE, University of Coimbra, 3030-790, Coimbra, Portugal

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0 ) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons To assess the structural integrity of parts obtained by additive manufacturing, especially in more complex geometries, the finite element method is extensively used, being necessary, for this purpose, to characterize the constitutive model of the material. From the printer manufacturing parameters, one of the most affecting the elastic and strength properties is the layer height. The layer-by-layer slicing sequence of additive manufacturing processes can introduce anisotropy into the materials, whereby, in most applications, materials obtained by these processes are considered orthotropic. The mechanical characterization of anisotropic materials through classical tests is not always the most suitable for this purpose, given the economic aspects, the time required, precision requirements and, sometimes, the technological difficulties of the tests. The ASTM E1876-21 standard presents a method for determining the dynamic elastic properties of materials by impulse excitation of vibration, at room temperature. In this article, the influence of the layer height in the dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio obtaine d by impulse excitation of vibration (ASTM E1876-21 standard), of Tough PLA is analyzed. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4.0 ) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons Keywords: Additive manufacturing; Dynamic elastic properties; Anisotropy; Layer height Abstract Polylactic acid (PLA) is a biodegradable thermoplastic polyester used extensively in 3D printing, that can be obtained from renewable resources with low production costs and low carbon emissions. The extrusion temperature of PLA is lower, and its tensile strength and elastic modulus are higher than that of other common polymeric thermoplastic materials. To assess the structural integrity of parts obtained by additive manufacturing, especially in more complex geometries, the finite element method is extensively used, being necessary, for this purpose, to characterize the constitutive model of the material. From the printer manufacturing parameters, one of the most affecting the elastic and strength properties is the layer height. The layer-by-layer slicing sequence of additive manufacturing processes can introduce anisotropy into the materials, whereby, in most applications, materials obtained by these processes are considered orthotropic. The mechanical characterization of anisotropic materials through classical tests is not always the most suitable for this purpose, given the economic aspects, the time required, precision requirements and, sometimes, the technological difficulties of the tests. The ASTM E1876-21 standard presents a method for determining the dynamic elastic properties of materials by impulse excitation of vibration, at room temperature. In this article, the influence of the layer height in the dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio obtaine d by impulse excitation of vibration (ASTM E1876-21 standard), of Tough PLA is analyzed. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4.0 ) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons Keywords: Additive manufacturing; Dynamic elastic properties; Anisotropy; Layer height Abstract Polylactic acid (PLA) is a biodegradable thermoplastic polyester used extensively in 3D printing, that can be obtained from renewable resources with low production costs and low carbon emissions. The extrusion temperature of PLA is lower, and its tensile strength and elastic modulus are higher than that of other common polymeric thermoplastic materials.

* Corresponding author. Tel.: +351-272-339-600. E-mail address: aramalho@ipcb.pt * Corresponding author. Tel.: +351-272-339-600. E-mail address: aramalho@ipcb.pt

2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4. 0 ) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons 2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4. 0 ) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons

2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the ESIAM23 chairpersons 10.1016/j.prostr.2024.01.012

Made with FlippingBook Ebook Creator