PSI - Issue 53

Reza Ahmadi et al. / Procedia Structural Integrity 53 (2024) 97–111 Author name / Structural Integrity Procedia 00 (2019) 000–000

111 15

International Journal of Fatigue , 126 (May), 319–326. https://doi.org/10.1016/j.ijfatigue.2019.05.014 Fargione, G., Geraci, A., La Rosa, G., & Risitano, A. (2002). Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue , 24 (1), 11–19. https://doi.org/10.1016/S0142-1123(01)00107-4 Gallotti, A., & Salerno, A. (2007). An experimental investigation on parameters influencing infrared strip gauges to perform thermoelastic stress measurements. Measurement Science and Technology , 18 (5), 1250–1256. https://doi.org/10.1088/0957-0233/18/5/011 Galvez, G. M., Olivar, K. A. M., Tolentino, F. R. G., Danao, L. A. M., & Abuan, B. E. (2023). Finite Element Analysis of Different Infill Patterns for 3D Printed Tidal Turbine Blade. Sustainability (Switzerland) , 15 (1). https://doi.org/10.3390/su15010713 Gonabadi, H., Chen, Y., Yadav, A., & Bull, S. (2022). Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques. International Journal of Advanced Manufacturing Technology , 118 (5–6), 1485–1510. https://doi.org/10.1007/s00170-021-07940-4 Guillermo, J., Rodríguez, D., David, A., Comas, P., David, J., & Herrera, S. (2023). Manufacturing ( AM ) . 66 , 127–139. https://doi.org/10.3221/IGF-ESIS.66.07 Hassanifard, S., & Behdinan, K. (2023). Anisotropy and internal flaws effects on fatigue response of notched 3D-printed PLA parts. Materials Today Communications , 35 (December 2022), 105734. https://doi.org/10.1016/j.mtcomm.2023.105734 Henriques, B., Pinto, P., Silva, F. S., Fredel, M. C., Fabris, D., Souza, J. C. M., & Carvalho, O. (2018). On the mechanical properties of monolithic and laminated nano-ceramic resin structures obtained by laser printing. Composites Part B: Engineering , 141 , 76–83. https://doi.org/10.1016/j.compositesb.2017.12.044 Jerez-Mesa, R., Travieso-Rodriguez, J. A., Llumà-Fuentes, J., Gomez-Gras, G., & Puig, D. (2017). Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manufacturing , 13 , 872–879. https://doi.org/10.1016/j.promfg.2017.09.146 La Rosa, G., & Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue , 22 (1), 65–73. https://doi.org/10.1016/S0142-1123(99)00088-2 Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal , 21 (5), 604–617. https://doi.org/10.1108/RPJ-09-2014-0135 Libonati, F., & Vergani, L. (2013). Damage assessment of composite materials by means of thermographic analyses. Composites Part B: Engineering , 50 , 82–90. https://doi.org/10.1016/j.compositesb.2013.01.012 Liu, R., Wang, Z., Sparks, T., Liou, F., & Newkirk, J. (2017). Aerospace applications of laser additive manufacturing. In Laser Additive Manufacturing: Materials, Design, Technologies, and Applications . Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100433-3.00013-0 Ma, G., & Wang, L. (2018). A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Frontiers of Structural and Civil Engineering , 12 (3), 382–400. https://doi.org/10.1007/s11709-017-0430-x Manela, A., & Pogorelyuk, L. (2015). Active noise control of a vibrating surface: Continuum and non-continuum investigations on vibroacoustic sound reduction by a secondary heat-flux source. Journal of Sound and Vibration , 358 , 20–34. https://doi.org/10.1016/j.jsv.2015.08.016 Miller, A. T., Safranski, D. L., Wood, C., Guldberg, R. E., & Gall, K. (2017). Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Journal of the Mechanical Behavior of Biomedical Materials , 75 (July), 1–13. https://doi.org/10.1016/j.jmbbm.2017.06.038 Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology , 32 (8), 773–785. https://doi.org/10.1038/nbt.2958 Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering , 143 (February), 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012 Razavi, S. M. J., Ferro, P., Berto, F., & Torgersen, J. (2018). Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V. Theoretical and Applied Fracture Mechanics , 97 , 376–384. https://doi.org/10.1016/j.tafmec.2017.06.021 Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery , 5 (4), 335–341. https://doi.org/10.1007/s11548-010-0476-x Risitano, A., & Risitano, G. (2013). Determining fatigue limits with thermal analysis of static traction tests. Fatigue and Fracture of Engineering Materials and Structures , 36 (7), 631–639. https://doi.org/10.1111/ffe.12030 Salerno, A., Costa, A., & Fantoni, G. (2009). Calibration of the thermoelastic constants for quantitative thermoelastic stress analysis on composites. Review of Scientific Instruments , 80 (3). https://doi.org/10.1063/1.3090885 Silberschmidt, V. V. (2022). Adhesion of Bone Marrow and Peritoneal Lavage Cells . Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design , 31 (1), 287–295. https://doi.org/10.1016/J.MATDES.2009.06.016 Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer thickness and raster angle on the mechanical properties of 3D printed PEEK and a comparative mechanical study between PEEK and ABS. Materials , 8 (9), 5834–5846. https://doi.org/10.3390/ma8095271 Clark, T., Woodley, R., De Halas, D., 1962. Gas-Graphite Systems, in “Nuclear Graphite”. In: Nightingale, R. (Ed.). Academic Press, New York, pp. 387. Deal, B., Grove, A., 1965. General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics 36, 37–70. Deep-Burn Project: Annual Report for 2009, Idaho National Laboratory, Sept. 2009. Fachinger, J., den Exter, M., Grambow, B., Holgerson, S., Landesmann, C., Titov, M., Podruhzina, T., 2004. Behavior of spent HTR fuel elements in aquatic phases of repository host rock formations, 2nd International Topical Meeting on High Temperature Reactor Technology. Beijing, China, paper #B08. Fachinger, J., 2006. Behavior of HTR Fuel Elements in Aquatic Phases of Repository Host Rock Formations. Nuclear Engineering & Design 236, 54.

Made with FlippingBook Ebook Creator