PSI - Issue 53

Rainer Wagener et al. / Procedia Structural Integrity 53 (2024) 151–160 Author name / Structural Integrity Procedia 00 (2019) 000–000

159

9

features will have an impact on each other, which is nearly impossible to consider by the usage of combined knock down factors. Finally, the industrial requirements concerning time and money must be considered, well-knowing that additively manufactured might consist of manifold defects und issues which must be considered in a proper manner. A database of different Representative Structural Elements, which are correlated to the exposure conditions, can help to simplify and optimize the fatigue approach of cyclically loaded additively manufactured structures. Acknowledgements The research and development projects, ‘VariKa’ that forms the basis for this report is funded within the scope of the “PAiCE Digitale Technologien für die Wirtschaft” technology program run by the Federal Ministry for Economic Affairs and Energy and is managed by the DLR project management agency „Gesellschaft, Innovation, Technologie Informationstechnologien/Elektromobilität“ at the German Aerospace Center in Cologne. The authors are responsible for the content of this publication. References Ampower GmbH und Co, Ampower: Additive-manufactoring-report.com. Technical report 2019 Basquin, O. H., 1910, The exponential law of endurance tests, Proceeding ASTM, 10, pp. 625–630 Coffin, L. F., 1954, A study on the effect of cyclic thermal stresses on a ductile metal, Trans. ASME, 76, pp. 931–950 Cortan, H.T., Dolan, T.J., 1956, Cumulative fatigue damage, Inst. of Mech. Engineers Endo, T., Morrow, J.D.,1969, Cyclic stress-strain and fatigue behaviour of representative aircraft metals, J. Matermn JMLSA, 4, No. 1, pp. 159– 175 Fatemi, A., Plaiseied, A., Khosrovaneh, A. K., Tanner, D., 2005, Application of bi-linear log-log S-N model to strain-controlled fatigue data aluminum alloys and its effect on life predictions, International Journal of Fatigue, 27, pp. 1040–1050 Fatemi, A., Shamsaei, N., 2011, Multiaxial fatigue: An overview and some approximation models for life estimation, International Journal of Fatigue, 33, pp. 948–958 Haibach, E., 1970, Modifizierte lineare Schadensakkumulations-Hypothese zur Berücksichtigung des Dauerfestigkeitsabfalls mit fortschreitender Schädigung. Darmstadt-Eberstadt: Laboratorium für Betriebsfestigkeit Hell, M., Wagener, R., Kaufmann, H., Melz, T., 2017, Fatigue Assessment with Special Respect to Size Effects and Material Behavior within Local Strain-Based Approaches. SAE Technical Paper 2017-01-0356, doi.org/10.4271/2017-01-0356 Hück, M., Bergmann, J., Schütz, W., 1988, Relative Miner-Regel, Industrieanlagen Betriebsgesellschaft (IABG), TF-2022 Kuguel, R. A., 1961, Relation between Theoretical Stress Concentration Factor and Fatigue Notch Deduced From the Concept of Highly Stressed Volume, ASTM Proceeding, 61, pp. 732–744 Landgraf, W. R., Morrow, J. D., Endo, T., 1969, Determination of the cyclic stress-strain curve, Journal of Materials, 4, pp. 176–188 Langer, B.F., 1937, Fatigue Failure from Stress Cycles of Varying Amplitude, Trans. ASME Journal Of Applied Mechanics, 59 Manson, S. S., 1965, Fatigue: A complex subject - some simple approximations, Experimental Mechanics, 5, No. 7, pp. 45–87 Melz, T. (Editor): Guideline - Fertigung betriebsfester Bauteile mittels PBF-LB/m Verfahren: Vom Pulver bis zum Bauteilversagen. Stuttgart: Fraunhofer Verlag, 2021. Miner, M. A., 1945, Cumulative Damage in Fatigue, ASME Journal of Applied Mechanics, 12, pp. 159–164 Morrow, J. D., 1965, Cyclic plastic strain energy and fatigue of metals, ASTM, STP 278, p. 45–87 Neuber, H., 1985, Kerbspannungslehre: Theorie der Spannungskonzentration Genaue Berechnung der Festigkeit, 3rd edition Berlin, New York: Springer-Verlag Nihei, M., Heuler, P., Boller, C., Seeger, T., 1986, Evaluation of mean stress effect on fatigue life by use of damage parameters, International Journal of Fatigue, 8, No. 3, pp. 119–126 Palmgren, A.,1924, Die Lebensdauer von Kugellagern, VDI-Zeitung, 68, pp. 339–341 Ramberg, W., Osgood, W. R., 1943, Description of stress-strain curves by three parameters. Washington D.C.: National Advisory Committee for Aeronautics Sanders, T. H., Mauney, D.A., Staley, J.T., 1977, Strain control fatigue as a tool to interpret fatigue initiation of aluminum alloys. In: Fundamental aspects of structural alloy design, Plenum Publishing, New York Sonsino, C. M., Kaufmann, H., Grubisic, V., 1995, Übertragbarkeit von Werkstoffkennwerten am Beispiel eines betriebsfest auszulegenden geschmiedeten Nutzfahrzeug-Achsschenkels, Konstruktion, 47, pp. 222–232 Sonsino, C.M., Kaufmann, H., Grubisic, V., 1997, Transferability of material data for the example of a randomly forged truck stub axle, Journal of Materials and Manufacturing, 106, pp. 649–670 Stephens, R.I., Koh, S.K., 19998, Bi-linear log-log elastic strain-life model for A356-T6 cast aluminum alloy round-robin low cycle fatigue data, In: R. I. Stephens. Fatigue and fracture, SAE SP-760 Wagener, R., 2007, Zyklisches Werkstoffverhalten bei konstanter und variabler Beanspruchungsamplitude, PhD-Thesis, TU Clausthal, Clausthal Zellerfeld

Made with FlippingBook Ebook Creator