PSI - Issue 53

João Alves et al. / Procedia Structural Integrity 53 (2024) 236–245 Author name / Structural Integrity Procedia 00 (2019) 000–000

245

10

Cao, S., Chen, Z., Lim, C. V. S., Yang, K., Jia, Q., Jarvis, T., Tomus, D., & Wu, X. (2017). Defect, Microstructure, and Mech anical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting. In JOM (Vol. 69, Issue 12, pp. 2684–2692). Minerals, Metals and Materials Society. https://doi.org/10.1007/s11837-017-2581-6. Froes F., 2015. “ Titanium : physical metallurgy, processing, and applications ”. ASM International. Ghosh, A., Sahu, V. K., & Gurao, N. P. (2022). Effect of heat treatment on the ratcheting behaviour of additively manufacture d and thermo mechanically treated Ti–6Al–4V alloy. Materials Science and Engineering A, 833. https://doi.org/10.1016/j.msea.2021.142345. Gong, H., Rafi, K., Gu, H., Janaki Ram, G. D., Starr, T., & Stucker, B. (2015). Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Materials and Design, 86, 545–554. https://doi.org/10.1016/j.matdes.2015.07.147. Karimi, J., Kollo, L., & Prashanth, K. G. (2023). Tailoring Anisotropy and Heterogeneity of Selective Laser Melted Ti6Al4V Alloys. Transactions of the Indian National Academy of Engineering. https://doi.org/10.1007/s41403-023-00393-z Liu, F., He, C., Chen, Y., Zhang, H., Wang, Q., & Liu, Y. (2020). Effects of defects on tensile and fatigue behaviors of sele ctive laser melted titanium alloy in very high cycle regime. International Journal of Fatigue, 140. https://doi.org/10.1016/j.ijfatigue.2020.105795. Masuo H., Tanaka Y., Morokoshi S., Yagura H., Uchida T., Yamamoto Y., Murakami Y., 2018. “Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing,” Int J Fatigue, vol. 117, pp. 163–179, Dec. 2018, doi: 10.1016/j.ijfatigue.2018.07.020. Matsunaga H., Murakami Y., Kubota M., Lee J. , 2003. “Fatigue Strength of Ti-6 Al-4V Alloys Containing Small Artificial Defects Morgado T., Paulo D., Velhinho A., Pereira M., and Mourão A., 2022“Fatigue Limit Prediction Models of 6060 Aluminium Extruded Alloy,” Procedia Structural Integrity, vol. 42, pp. 1545–1551, doi: 10.1016/j.prostr.2022.12.195. Moura Branco, C. (2011). “Mecânica dos Materiais”. 5th edition, Fundação Calouste Gulbenkian. (in portuguese). Murakami Y., Kodama S. , and Konuma S., 1989. “ Quantitative evaluation of effects of non -metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions,” Int. J. Fatigue, vol11, no. 5, pp. 291–298. Murakami Y. and Usuki H., 1989. “Quantitative evaluation of effects of non -metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size,” Int. J. Fatigue, vol. 11, no. 5, pp. 299–307. Murakami, Y., 2002. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions (Yukitaka Murakami, Ed.; 1st edition). Elsevier. Murakami, Y., Takagi, T., Wada, K., & Matsunaga, H. (2021). Essential structure of S -N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter. International Journal of Fatigue, 146. https://doi.org/10.1016/j.ijfatigue.2020.106138 Sun, Q. D., Sun, J., Guo, K., Waqar, S., Liu, J. W., & Wang, L. S. (2022). Influences of processing parameters and heat treat ment on microstructure and mechanical behaviour of Ti-6Al-4V fabricated using selective laser melting. Advances in Manufacturing, 10(4), 520–540. https://doi.org/10.1007/s40436-022-00389-y. Tajiri A., Nozaki T., Uematsu Y. , Kakiuchi T., Nakajima M., Nakamura Y., Tanaka H., 2012. “Fatigue Limit Prediction of Large Scale Cast Aluminum Alloy A356,” Procedia Materials Science , vol. 3, pp. 924–929, 2014, doi: 10.1016/j.mspro.2014.06.150 Ueno A., Nishida A., Miyakawa M. , and Kikuchi K. , 2012 “ Fatigue Limit Estimation of Aluminium Die-Casting Alloy by Means of √ area Method, ” Proc. 31st Symp. Fatigue (in Japanese), pp. 163 – 159. Xu, Z., Liu, A., Wang, X., Liu, B., & Guo, M. (2021). Fatigue limit prediction model and fatigue crack growth mechanism for selective laser melting Ti6Al4V samples with inherent defects. International Journal of Fatigue, 143. https://doi.org/10.1016/j.ijfatigue.2020.106008. Yin, H., & Li, P. (2022). Micropore-propagation-based model of fatigue life analysis of SLM manufactured Ti-6Al-4V. International Journal of Fatigue, 107352. https://doi.org/10.1016/j.ijfatigue.2022.107352.

Made with FlippingBook Ebook Creator