Issue 53

P. Ferro et alii, Frattura ed Integrità Strutturale, 53 (2020) 252-284; DOI: 10.3221/IGF-ESIS.53.21

[82] Criales, L.E., Ar ı soy, Y.M., Özel, T. (2016). Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625. Int. J. Adv. Manuf. Technol., 86, pp. 2653–2666. [83] Mirkoohi, E., Sievers, D.E., Garmestani, H., Chiang, K., Liang, S.Y. (2019). Three-dimensional semi-elliptical modeling of melt pool geometry T considering hatch spacing and time spacing in metal additive manufacturing. Journal of Manufacturing Processes, 45, pp. 532–543. [84] Xiang, Z., Yin, M., Dong, G., Mei, X., Yin, G. (2018). Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting. Results in Physics, 9, pp. 939–946. [85] Zhang, W., Tong, M., Harrison, N.M. (2019). Data on a computationally efficient approximation of part-powder conduction as surface free convection in powder bed fusion process modelling. Data in brief, 27, 104559. [86] Yan, W., Ge, W., Qian, Y., Lin, S., Zhou, B., Liu, W.K., Lin, F., Wagner, G.J. (2017). Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta Mater., 134, pp. 324–333. DOI: 10.1016/j.actamat. 2017.05.061. [87] Foroozmehr, A., Badrossamay, M., Foroozmehr, E. (2016). Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder-bed, JMADE. 89, pp. 255–263, DOI: 10.1016/j.matdes.2015. 10.002. [88] Wu, C.S., Wang, H.G., Zhang, Y.M. (2006). A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature, Profile, Weld. Res. pp. 284–291. [89] Tran, H.C., Lo, Y.L. (2018). Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration, J. Mater. Process. Technol., 255, pp. 411–425, DOI: 10.1016/j.jmatprotec.2017.12.024. [90] Verhaeghe, F., Craeghs, T., Heulens, J., Pandelaers, L. (2009). A pragmatic model for selective laser melting with evaporation, Acta Mater., 57, pp. 6006–6012. DOI: 10.1016/j.actamat.2009.08.027. [91] Ladani, L., Romano, J., Brindley, W., Burlatsky, S. (2017). Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder-bed technology, Addit. Manuf., 14, pp. 13–23, DOI: 10.1016/j.addma. 2016.12.004. [92] Liu, S., Zhu, H., Peng, G., Yin, J., Zeng, X. (2018). Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis, Mater. Des. 142, pp. 319–328. DOI:10.1016/j.matdes.2018.01.022. [93] Bruna-Rosso, C., Demir, A.G., Previtali, B. (2018). Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Materials and Design, 156, pp. 143–153. [94] Rolph, W.D., Bathe, K.-J. (1982). An efficient algorithm for analysis of nonlinear heat transfer with phase changes, Int. J. Numer. Methods Eng. 18(1), pp. 119– 134. DOI: 10.1002/nme.1620180111. [95] Chandrasekhar, S. (1981). Hydrodynamic and hydromagnetic stability, Ed. Courier Corporation. ISBN: 048664071X [96] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H., Zhang, D.Q. (2015). Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Tran., 80, pp. 288–300. [97] Huang, Y., Yang LJ, Du XZ, Yang YP. (2016). Finite element analysis of thermal behavior of metal powder during selective laser melting. Int. J. Therm. Sci., 104, pp. 146–57. [98] Schwalbach, E.J., Donegan, S.P., Chapman, M.G., Chaput, K.J., Groeber, M.A. (2019). A discrete source model of powder bed fusion additive manufacturing T thermal history. Additive Manufacturing, 25, pp. 485–498. [99] Dieter, G.E. (1961). Mechanical Metallurgy, McGraw-Hill, New York. [100] Withers, P.J., Bhadeshia, H.K.D.H. (2001). Residual stress. Part 2 – nature and origins, Mater. Sci. Technol., 17(4), pp. 366–375. [101] Withers, P.J. (2007). Residual stress and its role in failure, Rep. Prog. Phys., 70, pp. 2211–2264. [102] Gu, D., Hagedorn, Y.-C., Meiners, W., Meng, G., Batista, R.J.S., Wissenbach, K., Poprawe, R. (2012). Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Mater., 60, pp. 3849–3860. [103] Simson, T., Emmel, A., Dwars, A., Bohm, J. (2017). Residual stress measurements on AISI 316L samples manufactured by selective laser melting, Addit. Manuf., 17, pp. 183–189. [104] Yadroitsev, I., Yadroitsava, I. (2015). Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting, Virtual Phys. Proto. 10(2), pp. 67–76. [105] King, W.E., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., Rubenchik, A.M. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational and materials challenges, Appl. Phys. Rev. 2, pp. 1–26.

281

Made with FlippingBook Publishing Software