Issue 52
M.F. Bouali et alii, Frattura ed Integrità Strutturale, 52 (2020) 82-97; DOI: 10.3221/IGF-ESIS.52.07
As explained by Gilormini and Brechert 18 , the choice of a model is governed by several parameters including the geometry of the heterogonous medium, the mechanical contrast between the phases (E g /E m ) and the volume fraction of reinforcement (V g ). Therefore, the equivalent homogenous behavior of LWAC depends of the characteristics of the mortar (matrix, phase m) and lightweight aggregate (dispersed phase, phase g).
Figure 1: Composite models: (a) Voigt model, (b) Reuss model, (c) Popovics model, (d) Hirsch-Dougill model, (e) Hashin-Hansen model, (f) Maxwell model, (g) Counto1 model, (h) Counto2 model. Voigt model 10, 19 : c_ Voigt m m g g E E V E V . (1)
E E
m g
E
Reuss model 10, 19 :
(2)
c_ Reuss
g g m g E V E E
1 2
Voigt E E
Reuss
Popovics model 10, 20 :
. (3)
E
c_ Popovics
c
c
1
1
E
Hirsch-Dougill model 10, 15, 21 :
(4)
c_ Hirsch
2 1
1
E
E
c_ Voigt
c_ Reuss
E E E E V m g E E E E V g m g m g g m g
Hashin-Hansen model 10, 11, 22 :
.
(5)
E
E
c_ Hashin
m
1 2V α 1 / α 2 1 V α 1 / α 2 E E g g g
E
E
c_ Maxwell
m
Maxwell model (dispersed phase) 10, 15 :
.
(6)
m
V
g
Counto1 mod 17, 23 :
E
m E 1
. (7)
c_Counto1
E
m
V V
g
g
E E
g
m
V
g
Counto2 model 17 :
E
m E 1
.
(8)
c_Counto2
E
g
V
g
E E
g
m
V
m E E V
Bache and Nepper-Christensen model 15, 24 :
E
(9)
g
c_ Bache
m
g
84
Made with FlippingBook Publishing Software