Issue 52

O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04

          

         

1, 00 2, 00 1, 00 2, 00 3, 00 3 00 ,

1, 01 2, 01 1, 01 2, 01 3, 01 3, 01

1, 10 2, 10 1, 10 2, 10 3, 10 3, 10

1, 11 2, 11 1, 11 2, 11 3, 11 3, 11

1, 20 2, 20 1, 20 2, 20 3, 20 3, 20

1, 21 2, 21 1, 21 2, 21 3, 21 3, 21

  

  

  

  

  

  

  jk s 

  * jk s

1    S S * , 

       S S S S

,

,

  1 j

k

k

k

   

2  

i  

j 

( ) 

j 

j 

i

i

i

j

j

j

2

1, 44 3 ( k      c

, 2, 3 k 

1,

2, jk

3, jk

k 

i

),

,

,

jk

j 

j 

j 

j 

j 

j 

1, 1,    

  

 

2, jk

3, jk

 

3, jk )       j 3

, 2, jk 

2, jk

1,

, 3, jk 

33 c  

3  

c

i

j 

(  

,

c

i

44 [

(

)]

jk

jk

j

13

jk

2

4

6

2

* s s q    , 3, , p kn np k  

* s s q  , kn np

* s s q   , kn np

s s   

p

p

p

,

,

,

*

q

k

k

k

kn np

1,

2,

3,

n

n

n

n

1

3

5

1

3 ( ) V z 

5 ( ) V z 

3 ( ) V z 

5 ( ) V z 

The formulas for the definition

and

we obtain respectively from the formulas for

and

, by

permutations   . Using expressions (A.9), we compose the transformants of the sums of limiting values: 0 z   thermoelastic characteristics of the space, and proceed to the originals. As a result, we obtain singular integral relations in 3 ( ),   connecting jumps and the sum of the components of the stress tensor, displacement vectors, temperature and heat flux in the plane: 2  3    ,  4  5    ,  1  2

5

1

1

1

1

1

 

15 7   q  

1 

11 1 q     13

j 

3 1      ]

} , dtd 

x y q

{ [ q

q

q

( , )

j

3

12 2 2

14 6

16 8

3

r

r

r

2

r

j

4

0

0

0

0

x t 

x t 

y

1

1



22 2       24 2 6 q   

q     

2 

 

q   

x y q

q

q

( , )

{

[

]

21 1 2

2 22 1

11 2

22 3 2

2

2

2

r

2

r

r

r

0

0

0

0

y

1

1

1

1

2 23 4 12    q   

2

2

12 1 25 7 2        ] q  q

} , dtd 

q

q

[

5 23 2

26 8

2

r

r

r

r

r

0

0

0

0

0

x t 

y

y

1



22 3       24 1 6 q   

 

3 

q   

x y q

q

q

( , )

{

[

]

22 2 1

3 22 2

11 1

2

2

2

2

r

r

r

0

0

0

x t 

1

1

1

1

1

 

2

2

2

          

} , dtd 

q

q 

q

q

q

q

[

]

4 23 1

12 2

21 1 1

23 5 12

25 7 1

26 8 2

r

r

r

r

r

r

0

0

0

0

0

0

x t 

x t 

y

y

1

1



q     

4 

q   

34 6 1    q 

( , ) x y

q

q

{

[

]

31 1

32 2 2

3 32 1

21 2

2

2

r

r

r

r

r

0

0

0

0

0

x t 

x t 

x t 

x t 

y

q     

33 4   

4 33 2   [ q 

q   

dtd q  

q

q

]

}

,

22 1

33 5 2

35 7

36 8

2

2

2

2

r

r

r

r

r

0

0

0

0

0

48

Made with FlippingBook Publishing Software