Issue 52
O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04
1
  ρ , 
  
  V , V   3,
  
  
3 n v       
3,
3,
n j        v 
, e d j    in
j
,
V
.
v
V
1, 3, 5,
n
n
n
n
j
2
 , V ( ρ ) j n
     ( 0, 1, 2, 3, ) n
For determination of coefficient в
in expansions (12), we move on in system (9) to polar
coordinates and apply the finite Fourier transform. Then, taking into account formulas [19]
1
(   ) ik e   
( ) ( ) , dt  
J t J t
k
k
2
2
2 cos( 
)  
 
 
,
k
0
i m 
e
d
0  of representation (12), and the convolution theorem, after simple transformations, we obtain the following system of integral equations 0 1, m m  *   *  * 0 W ( , ), W ( , )   ( ) ( ) , t dt  kn k n i J t J e            
1, 1 4 , W [U ] G , 0 n n n n    4
, a n      
W [U] nn
0, 1, 2, , 
(13)
B
G
n
Here we use the notation
j
1,
*
*
1 3 3 U {U , U , U }, U ( ), U 0.5(U ( 1) U ), n n n n n jn n n V       2 3 1
j
2, 3,
1     n
1     n
  
5, V ( )]   
n 
n 
1 3, V ( )] , U [ n   
n
* 3
1 3, V ( )] , U ( )   
* 3
U ( ) 
[
[
n
n
n
n
n
n
4
c
0.5
  
n n 
n 
5,
1 G 0.5 с   n
c  
24 q F
q
c
c
W [V ],G n n n
,
,
n
n
n
n
n
n
25 ,
3
0 0,
q 
23
 
[ ],  
5, W [V ], n n n
G ( )  
F q F 
( ) 2  
3 0  
12 1  
( ) 
 
q
F
n
n
n
n
n
n
n
2
44
45 ,
a
2
q d
 
0
0 00
G { 
1, ))     n
0 
* 
* * *     d
[ ( d
id
, n n )]}, W [ ] f
f
(
( )W ( , )
,
n
n
n
n
n
kn
4
10 1,
01 1,
1,
q
2
4
65
0
    
   
41 q q q q  2
0
21 23
41 q q q q  2
21 43 41 23 23 q q q q q q q          23 23 , (
3
1
* 3
21 23
 
{ } jm b
{ } jm b
0 , 
2
),
B
B
43
2
43
0 0 1
, j n   Kronecker symbol; n c  constants that are determined from conditions
a
0 
1 d     n
* n U 3
(14)
( )
0
 3 ( ) R
For the operator
there is an inverse [19], which is an isomorphism in
and allows the representation
, W l l
a
t
1 2 
l
1
l
( ) 
f
t
dt
d
2
0 
* , l l W [ ( )] f 
   
d
(15)
l
1 
1 2
1 2
2
2
2
2
dt
t
t
(
)
(
)
37
Made with FlippingBook Publishing Software