Issue 52
O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04
1
ρ ,
V , V 3,
3 n v
3,
3,
n j v
, e d j in
j
,
V
.
v
V
1, 3, 5,
n
n
n
n
j
2
, V ( ρ ) j n
( 0, 1, 2, 3, ) n
For determination of coefficient в
in expansions (12), we move on in system (9) to polar
coordinates and apply the finite Fourier transform. Then, taking into account formulas [19]
1
( ) ik e
( ) ( ) , dt
J t J t
k
k
2
2
2 cos(
)
,
k
0
i m
e
d
0 of representation (12), and the convolution theorem, after simple transformations, we obtain the following system of integral equations 0 1, m m * * * 0 W ( , ), W ( , ) ( ) ( ) , t dt kn k n i J t J e
1, 1 4 , W [U ] G , 0 n n n n 4
, a n
W [U] nn
0, 1, 2, ,
(13)
B
G
n
Here we use the notation
j
1,
*
*
1 3 3 U {U , U , U }, U ( ), U 0.5(U ( 1) U ), n n n n n jn n n V 2 3 1
j
2, 3,
1 n
1 n
5, V ( )]
n
n
1 3, V ( )] , U [ n
n
* 3
1 3, V ( )] , U ( )
* 3
U ( )
[
[
n
n
n
n
n
n
4
c
0.5
n n
n
5,
1 G 0.5 с n
c
24 q F
q
c
c
W [V ],G n n n
,
,
n
n
n
n
n
n
25 ,
3
0 0,
q
23
[ ],
5, W [V ], n n n
G ( )
F q F
( ) 2
3 0
12 1
( )
q
F
n
n
n
n
n
n
n
2
44
45 ,
a
2
q d
0
0 00
G {
1, )) n
0
*
* * * d
[ ( d
id
, n n )]}, W [ ] f
f
(
( )W ( , )
,
n
n
n
n
n
kn
4
10 1,
01 1,
1,
q
2
4
65
0
41 q q q q 2
0
21 23
41 q q q q 2
21 43 41 23 23 q q q q q q q 23 23 , (
3
1
* 3
21 23
{ } jm b
{ } jm b
0 ,
2
),
B
B
43
2
43
0 0 1
, j n Kronecker symbol; n c constants that are determined from conditions
a
0
1 d n
* n U 3
(14)
( )
0
3 ( ) R
For the operator
there is an inverse [19], which is an isomorphism in
and allows the representation
, W l l
a
t
1 2
l
1
l
( )
f
t
dt
d
2
0
* , l l W [ ( )] f
d
(15)
l
1
1 2
1 2
2
2
2
2
dt
t
t
(
)
(
)
37
Made with FlippingBook Publishing Software