Issue 52
N. Hebbar et alii, Frattura ed Integrità Strutturale, 52 (2020) 230-246; DOI: 10.3221/IGF-ESIS.52.18
DOI: 10.12989/sem.2016.57.2.315. [26] Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P., (2014). Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loading using VIM, Steel Compos. Struct. 17(5), pp. 753-776. DOI: 10.12989/scs.2014.17.5.753 [27] Rahmani, O. and Pedram, O. (2014). Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Science. 77, pp. 55-70. DOI: 10.1016/j.ijengsci.2013.12.003 [28] AlKhateeb et Zenkour. (2014). A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment. Composite Structures. 111, pp. 240–248. DOI: 10.1016/j.compstruct.2013.12.033 [29] Vo, T. P., Thai, H. T., Nguyen, T. K., & Inam, F. (2014a). Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica. 49, pp. 155–168. [30] Vo, T. P., Thai, H. T., Nguyen, T. K., Maheri, A. and Lee, J. (2014b). Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures. 64, pp. 12–22. DOI: 10.1016/j.engstruct.2014.01.029. [31] Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015). A new higher order shear and normal deformation theory for functionally graded beams, Steel Compos. Struct. 18(3), pp. 793-809. DOI: 10.12989/scs.2015.18.3.793. [32] Vo, T. P., Thai, H. T., Nguyen, T. K., Inam, F., & Lee, J. (2015). A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures. 119, pp. 1–12. DOI: 10.1016/j.compstruct.2014.08.006. [33] Zemri, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. (2015). A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shears deformation theory beam theory, Structural Engineering and Mechanics. 54(4), pp. 693-710. DOI: 10.12989/sem.2015.54.4.693. [34] Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015). Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position, Compos. Struct. 125, pp. 621-630. DOI: 10.1016/j.compstruct.2014.12.070. [35] Ebrahimi, F. and Dashti, S. (2015). Free vibration analysis of a rotating non-uniform functionally graded beam, Steel Compos.Struct.19(5), pp. 1279-1298. DOI: 10.12989/scs.2015.19.5.1279. [36] Kar, V.R. and Panda, S.K. (2015). Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel, Steel Compos. Struct., Int. J.18(3), pp. 693-709. DOI: 10.12989/scs.2015.18.3.693. [37] Bourada M., Kaci A., Houari M.S.A., Tounsi A. (2015). A new simple shear and normal deformations theory for functionally graded beams, Steel and Composite Structures. 18(2), pp. 409-423. DOI: 10.12989/scs.2015.18.2.409. [38] Celebi, K., Yarimpabuc, D., Keles, I. (2015). A unified method for stresses in FGM sphere with exponentially-varying properties, Struct. Eng. Mech. 57(5), pp. 823-835. DOI: 10.12989/sem.2016.57.5.823. [39] Boukhari, A., Fouad, B., Djalil, B.A., Mohamed, B.B., Abdelouahed, T., Bedia, E.A. (2016). The thermal study of wave propagation in functionally graded material plates (FGM) based on neutral surface position, Mathematical Modelling of Engineering Problems. 3(4), pp. 202-205. DOI: 10.18280/mmep.030410. [40] Ebrahimi and Barati. (2016a). A nonlocal higher-order shear deformation beam theory for vibration analysis of size dependent functionally graded nanobeams. Arabian Journal for Science and Engineering. 41(5), pp. 1679-1690. DOI: 10.1007/s13369-015-1930-4. [41] Ahouel. M., Mohammed Sid Ahmed Houari, E.A. Adda Bedia and Abdelouahed Tounsi, (2016), Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nano-beams including neutral surface position concept. Steel and Composite Structures. 20(5), pp. 963-981. DOI: 10.12989/scs.2016.20.5.963. [42] Shafiei Navvab, Alireza Mousavi, Majid Ghadiri, (2016), On the size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams, International Journal of Engineering Science. 106, pp. 42-56. DOI: 10.1016/j.ijengsci.2016.05.007 [43] Raminnea, M., Biglari, H. and Vakili Tahami, F. (2016). Nonlinear Dynamics Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid. Structural Engineering & Mechanics. 59(1), pp. 153-186. DOI: 10.12989/sem.2016.59.1.153. [44] Ghumare and Sayyad. (2017). Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature. Composite Structures. 171, pp. 486-504. DOI: 10.1016/j.compstruct.2017.03.053. [45] Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F., Mahmoud, S.R. (2017). An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities, Earthquakes and Structures. 13(3), pp. 255-265. DOI: 10.12989/EAS.2017.13.3.255.
245
Made with FlippingBook Publishing Software