PSI - Issue 51
Alan Vaško et al. / Procedia Structural Integrity 51 (2023) 129–134 A.Vaško et al. / Structural Integrity Procedia 00 (2022) 000–000
134
6
a
b
Fig. 4. Wöhler fatigue curves and microstructure of ferrite-pearlitic and pearlite-ferritic nodular cast irons; a) EN-GJS-X300SiMo4-1, R m = 573.9 MPa, σ c = 210 MPa, σ c /R m = 0.37; b) EN-GJS-X300SiCu4-1.5, R m = 652.7 MPa, σ c = 270 MPa, σ c /R m = 0.41. 4. Conclusions The fatigue characteristics for austenitic nodular cast irons are not specified in the European norm. Therefore, the purpose of the study was to evaluate the fatigue characteristics of NiCr-austenitic nodular cast iron and compare them with those of nodular cast irons with other matrixes. Results of the study show that austenitic nodular cast iron has a lower fatigue limit than alloyed nodular cast irons with ferrite-pearlitic and pearlite-ferritic matrixes. This is connected to the lower tensile strength, which is dependent on microstructure. Austenitic nodular cast iron has better plasticity but worse strength and fatigue characteristics. It also has additional advantages, including a high level of corrosion resistance, the ability to be used at either high or low temperatures, and the ability to be used for non-magnetic castings. However, despite its excellent properties, the use of this material is limited by its relatively high cost in comparison to other possible alternative materials. Acknowledgements The research has been supported by the grant projects VEGA No. 1/0398/19, KEGA No. 016ŽU-4/2020 and KEGA No. 004ŽU-4/2023. References Handrik, M., Kopas, P., Baniari, V., Vaško, M., Sága, M., 2017. Analysis of stress and strain of fatigue specimens localised in the cross-sectional area of the gauge section testing on bi-axial fatigue machine loaded in the high-cycle fatigue region. Procedia Engineering 177, 516-519. Hasse, S., 2022. Giessereilexikon. Foundry Technologies & Engineering, https://www.giessereilexikon.com/en. Kaňa, V., 2017. Výroba a vlastnosti austenitických litin. Slévárenství 65, 6-11. Lukhi, M., Hütter, G., Kuna, M., 2018. A novel micromechanics approach for understanding of fatigue in nodular cast iron. Procedia Structural Integrity 13, 607-612. Morrison, J. C., Covert, R., Spear W., 1998. Ni-Resist and ductile Ni-Resist alloys. Nickel Development Institute, Reference Book No. 11018. Otáhal, V., 2009. Tvárná litina – Litina s kuličkovým grafitem, Metal Casting and Foundry Consult, Brno, Czech Rep. Röhrig, K., 2004. Austenitische gusseisen. Konstruieren + Giessen 29, 2-33. Stefanescu, D. M., 2017. ASM Handbook, Vol. 1A: Cast iron science and technology, ASM International, Materials Park, USA. Sýkora, P., 2000. Metalurgie výroby austenitické litiny s kuličkovým grafitem. Slévárenská ročenka, 141-156. Vaško, A., Uhríčik, M., Kuchariková, L., Tillová, E., 2018. Microstructure, mechanical and fatigue properties of SiMo- and SiCu- nodular cast irons. Procedia Structural Integrity 13, 1527-1532. Věchet, S., Kohout, J., Bokůvka, O., 2002. Únavové vlastnosti tvárné litiny, EDIS, Žilina, Slovakia. Berns, H., Theisen, W., 2008. Ferrous materials: Steel and cast iron, Springer, Bochum, Germany. Davis, J. R., 1999. ASM Specialty Handbook: Cast irons, ASM International, Materials Park, USA. Franke, S., 2015. Pocket guide foundry, Schiele & Schön, Berlin, Germany. Franke, S., 2019. Giesserei-lexikon, Schiele&Schőn, Berlin, Germany.
Made with FlippingBook Ebook Creator