PSI - Issue 51

Nils Wegner et al. / Procedia Structural Integrity 51 (2023) 122–128 N. Wegner et al. / Structural Integrity Procedia 00 (2022) 000–000

128

7

the developed short-time method resulted in a change of corrosion mechanism present at OCP and cannot be considered applicable, in particular when comparing and, thus, underestimating fatigue strength of PEO modified versus bare metallic Mg alloys. However, the elaborated method can be considered as worst-case testing to generally exclude unsuitable non-surface modified Mg alloys already in early stages and before expensive preclinical studies. Acknowledgements The authors thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for its financial support within the research projects “Development and validation of an in vitro short-time testing method for the prediction of the in vivo behavior of absorbable metallic implant materials” (project no. 394479422) and “Mechanism based characterization of the texture influence on the corrosion and corrosion fatigue properties of zinc-based wrought magnesium alloys” (project no. 461435286). References Chen, Y., Xu, Z., Smith, C., Sankar, J., 2014. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia 10, 4561-4573. Song, G., Atrens, A., 2003. Understanding magnesium corrosion – A framework for improved alloy performance. Advanced Engineering Materials 5(12), 837-858. Singh Raman, R.K., Jafari, S., Harandi, S.E., 2015. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review. Engineering Fracture Mechanics 137, 97-108. Hou, R., Victoria-Hernandez, J., Jiang, P., Willumeit-Römer, R., Luthringer-Feyerabend, B., Yi, S., Letzig, D., Feyerabend, F., 2019. In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia 97, 608-622. Ascencio, M., Pekguleryuz, M., Omanovic, S., 2014. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science 87, 489-503. Zheng, F., Rassat, S.D., Helderandt, D.J., Caldwell, D.D., Aardahl, C.L., Autrey, T., Linehan, J.C., Rappé, K.G., 2008. Automated gas burette system for evolved hydrogen measurements. Review of Scientific Instruments 79, 084103. Nidadavolu, E.P.S., Feyerabend, F., Ebel, T., Willumeit-Römer, R., Dahms, M., 2016. On the determination of magnesium degradation rates under physiological conditions. Materials 9, 627. Shi, Z., Jia, J.X., Atrens, A., 2014. Galvanostatic anodic polarization of WE43. Journal of Magnesium and Alloys 2, 197-202. Huang, J., Song, G.-L., Zhu, Y., Zheng, D., Wang, Z., 2021. The anodically polarized Mg surface products and accelerated hydrogen evolution. Journal of Magnesium and Alloys, In Press. Thomas, S., Medhekar, N.V., Frankel, G.S., Birbilis, N., 2015. Corrosion mechanism and hydrogen evolution on Mg. Current Opinion in Solid State and Materials Science 19, 85-94. Zeng, Z., Stanford, N., Davies, C.H.J., Nie, J.-F., Birbilis, N., 2019. Magnesium extrusion alloys: A review of developments and prospects. International Materials Reviews 64(1), 27-62. Esmaily, M., Zeng, Z., Mortazavi, A.N., Gullino, A., Choudhary, S., Derra, T., Benn, F., D´Elia, F., Müther, M., Thomas, S., Huang, A., Allanore, A., Kopp, A., Birbilis, N., 2020. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting. Additive Manufacturing 35, 101312. Darband, G.B., Aliofkhazraei, M., Hamghalam, P., Valizade, N., 2017. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys 5, 74-132. Hartjen, P., Wegner, N., Ahmadi, P., Matthies, L., Nada, O., Fuest, S., Yan, M., Knipfer, C., Gosau, M., Walther, F., Smeets, R., 2021. Toward tailoring the degradation rate of magnesium ‐ based biomaterials for various medical applications: Assessing corrosion, cytocompatibility and immunological effects. International Journal of Molecular Sciences 22, 971. Wegner, N., Walther, F., 2021. Assessment of galvanostatic anodic polarization to accelerate the corrosion of the bioresorbable magnesium alloy WE43. Applied Sciences 11, 2128. Yang, Y., Scenini, F., Curioni, M., 2016. A study on magnesium corrosion by real‐time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution. Electrochimica Acta 198, 174‐184. Coy, A.E., Viejo, F., Skeldon, P., Thompson, G.E., 2010. Susceptibility of rare‐earth‐magnesium alloys to micro‐galvanic corrosion. Corrosion Science 52, 3896-3906. Klein, M., Lu, X., Blawert, C., Kainer, K.U., Zheludkevich, M.L., Walther, F., 2017. Influence of plasma electrolytic oxidation coatings on fatigue performance of AZ31 Mg alloy. Materials and Corrosion 68(1), 50-57.

Made with FlippingBook Ebook Creator