PSI - Issue 51

Tereza Juhászová et al. / Procedia Structural Integrity 51 (2023) 213–218 Juhaszova et al./ Structural Integrity Procedia 00 (2022) 000–000

218

6

of the material. On the other hand, the values of Paris’ law constant C were lower in this case, which means slower FCGR necessary for the crack linear propagation threshold value. The results of this study could also be used in a probabilistic analysis of fatigue damage assessment, see e.g. Krejsa et al. (2016), Kala et al. (2017, 2019), etc. Acknowledgements The research was supported by the project No. 21-14886S of the Czech Science Foundation and by the project n.o. FAST-J-22-7959 of the Brno University of Technology internal grant agency. References ANSYS, INC. 2021. Ansys® Academic Mechanical APDL, Release 21.2. Baddoo, N.R., 2008. Stainless steel in construction: A review of research, applications, challenges and opportunities, J. Constructional Steel Research 64(11), 1199–1206. Braet, L., Juhászová, T., Jindra, D., Marka, P., Seitl, S., 2021. Finding the optimal stress state of a stainless-steel IPE profile for fatigue experiments. Procedia Structural Integrity 33, 1065–1072. Gardner, L. 2019. Stability and design of stainless steel structures—Review and outlook, Thin-Walled Struct., 141, 208–216. Gedge, G., 2008. Structural uses of stainless steel - buildings and civil engineering. Journal of Constructional Steel Research 64(11), 1194–1198. Irwin, G.R. 1957. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics 24(3), 361–364. Juhászová T., Miarka P., Jindra D., Kala Z., Seitl S., 2022. Comparison of crack propagation rates in selected structural components made from AISI 304 grades: Three-point bending test. In Procedia Structural Integrity. 42, 1090–1097. Juhászová T., Miarka P., Jindra D., Kala Z., Seitl S., 2023. Evaluation of fatigue crack growth rates in an IPE beam made of AISI 304 under various stress ratios. Procedia Struct. Integr. 43, 172–177 Kala Z., Omishore A., Seitl S., Krejsa M., Kala J., 2017. The effect of skewness and kurtosis on the probability evaluation of fatigue limit states, International Journal of Mechanics, 11, 166–175. Kala Z., Seitl S., Krejsa M., Omishore A., 2019. Reliability assessment of steel bridges based on experimental research, AIP Conference Proceedings, 2116. Klesnil, M, Lukáš, P., 1992. Fatigue of Metallic Materials. Elsevier Science Publishers, Amsterdam. 270 p. Klusák J., Kozáková K., Fintová S., Seitl S. 2022 Fatigue lifetimes of 1.4306 and 1.4307 stainless steels subjected to ultrasonic loading. Procedia Struct. Integr. 42, 1369–1375. Klusák J., Kozáková K., Jambor M., Seitl S., 2023. Fatigue behavior of DIN 1.4307 and DIN 1.4306 stainless steels under high frequency loading. Procedia Struct. Integr. 43, 142–147 Krejsa, M., Koubova, L., Flodr, J., Protivinsky, J. and Nguyen, Q. T., 2016. Probabilistic prediction of fatigue damage based on linear fracture mechanics, Frattura ed Integrità Strutturale, 11(39), 143–159. Paris, P.C., Erdogan F., 1963. A critical analysis of crack propagation laws. Journal of Fluids Engineering, Transactions 85(4), 528–533. Pook, L.P., 2000. Linear Elastic Fracture Mechanics for Engineers: Theory and Applications 1st ed., London: WIT Press. Seitl, S., Horník, V., Lesiuk, G., Kunz, L., 2023. Influence of Micro-structure of selected components made from AISI 304 on the mechanical properties, Structural Integrity Procedia 43, 113–118 Seitl S., Pokorný P., Benešová A., Juhászová T., Kala Z., 2022a. Variance of selected properties from various structural elements made from AISI 304. Trans. VSB TU Ostrava Ser. 22, 3944. Seitl S., Pokorný P., Klusák J., Duda S., Lesiuk G., 2022b. Effect of specimen thickness on fatigue crack growth resistance in Paris region in AISI 304 steel. Structural. Integrity. 24, 291–297. Suresh, S., 1998. Fatigue of Materials 2nd ed., Cambridge: Cambridge Univ. Press.

Made with FlippingBook Ebook Creator