Issue 51
A. Falk et alii, Frattura ed Integrità Strutturale, 51 (2020) 541-551; DOI: 10.3221/IGF-ESIS.51.41
[20] La Rosa, G., Clienti, C. and Garrano, A. M. C. (2015). The use of digital image correlation to correct the thermoelastic curves in static tests, Procedia Structiral Integrity, 2, pp. 2140-2147. [21] Ramosa, T., Furtado, A., Eslami, S., Alves, S., Rodrigues, H., Arêde, A., Tavares, PP. J., Moreira, PP. M. G. PP. (2015). 2D and 3D Digital Image Correlation in Civil Engineering – Measurements in a Masonry Wall, Procedia Engineering, 114, pp. 215-222. [22] Pan, B., Yuan, J., Xi, Y. (2014). Strain field denoising for digital image correlation using a regularized cost-function, Optics and Lasers in Engineering, 65, pp. 9–17. [23] Tekieli, M., De Santis, S., Felice, G., Kwiecien, A., Roscini, F. (2017). Application of Digital Image Correlation to composite reinforcements testing, Composite Structures, 160, pp. 670–688. [24] Hild, F., Roux, S. (2006). Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review, Journal compilation, 42, pp. 69-80. [25] Malesa, M., Malowany, K., Tomczak, Ur., Siwek, B., Małgorzata, K., Lewandowska, A.S. (2013). Application of 3D digital image correlation in maintenance and process control in industry, Computers in Industry, 64, pp. 1301-1315. [26] Li, J., Xiea, X., Yang, G., Zhang, B., Siebert, T., Yang, L. (2017). Whole-field thickness strain measurement using multiple camera digital image correlation system, Optics and Lasers in Engineering, 90, pp. 19–25. [27] Pan, B., Qian, K., Xie, H., Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol. 20 (6), 062001. [28] Hung, PP. C.,Voloshin, A.S. (2003). In-plane strain measurement by digital image correlation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXV, 3. [29] Lin, S., Lienert, U., Haas, S., Gutschimidt, S. (2015). Strain Measurement by Digital Image Correlation. [30] Chiozzi, D., Bernardoni, M., Delmonte, N., Cova, PP. (2016). A simple 1-D finite elements approach to model the effect of PCB in electronic assembly, Microelectronic Reliability, 56, pp. 126-132. [31] Fan, X., Pei, M., Bhatti, PP. K. (2006). Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages, Electronic Components and Technology Conference. [32] Li, L., Kimb, S.M., Song, S.H., Ku, T.W., Song, W.J., Kim, J., Chong, M.K., Park, J.W., Kang, B.S. (2008). Finite element modeling and simulation for bending analysis of multi-layer printed circuit boards using woven fiber composite, Journal of Materials Processing Technology, 201, pp. 746-750. [33] Zahn, B. A. (2002). Finite element-based solder joint fatigue life predictions for a same die size-stacked-chip scale-ball grid array package, Technology Symposium: International Electronics Manufacturing Technology (EMT) Symposium. [34] Falk, A., Marsavina, L., Pop, O. (2019). Experimental determination of strain distribution on Printed Circuit Boards using Digital image correlation, Procedia Structural Integrity, 18, (2019) 214–222.
551
Made with FlippingBook - professional solution for displaying marketing and sales documents online