Issue 51

Y. Dubyk et alii, Frattura ed Integrità Strutturale, 51 (2020) 459-466; DOI: 10.3221/IGF-ESIS.51.34

         

         

2

3

3

  

1    

1

 

0

2

3

2

s  

2

2

s

2

3

  

  

1

1

[

]

0

3

3

(5)

L

MOD

2

2   s

2

2

s

3

3

3

2

1    

  

13

 

1 2 

3

2

2   s

2

s  

2

2

s

         

         

2

2

2

2 N N N  

N

0

x

x

2

2

x  

s

s

2

2

2

3

  

1

2 N N N  

[

]

0

3

(6)

L

INI

x

x

2

2

2   s

x  

2

s

2

2

2

2 N N 

2 N N N   

N

x

x

x

2

2

x  

s

x

s

The following notations are used:

2

h

Eh

 

D H 

; 

(7)

k

H

;

;

2 R R

2

2

12

1

R  shell radius, h  shell thickness, E  Young’s modulus,   Poisson ratio.

The complete explicit solution of Eq. (2) can be found only for simplest geometries, and loadings, for a single dent it can’t be obtained, thus a numerical procedure is developed below based on the accurate solution for the harmonic imperfection and Fourier series expansion. Harmonic imperfection A harmonic imperfection was considered as a base for further solution and the displacements representation can be found using:   cos sin u mn u C n x R          ,   sin cos v mn v C n x R          ,   cos cos w mn w C n x R          (8)

/ m R l    , , n m  wave number in circumferential and axial directions, l  length of the shell, , , u v w mn mn mn C C C  modes coefficients for corresponded directions. Substituting representations (8) in Eq. (2), we can get a simple algebraic set of equations:

   

2

2

2

2

k n kn n 

   

2

N

  

  

n

1 2

 

   

u

v

w

2

2

2

2 C k n k kn  

2 2     

C

C

(9)

1

0

2

2

N N n  

  

mn

mn

mn

H

2

2

x

2

n   

2

H

   

2       2   2 3 2 k n

2 

k

3

N

 

  

n

2 n

1 2

   

   

u

v

w C k  mn

2 

2     3 k

C

C

(10)

1

2 2

0

2  N N n 

2

mn

mn

H

2

x

2 

2  

H

461

Made with FlippingBook - professional solution for displaying marketing and sales documents online