Issue 51
S. Merdaci et alii, Frattura ed Integrità Strutturale, 51 (2020) 199-214; DOI: 10.3221/IGF-ESIS.51.16
The external force according to Navier’s solution can be expressed as
1 1 m n
sin( )sin( ) mn x y
q x y
q
( , )
(17)
/ n b
/ m a
and
, « m » and « n »are mode numbers. For the case of a sinusoidally distributed load, we
where
have
1 m n and 11 0 q q
(18)
where q 0 represents the intensity of the load at the plate center. Following the Navier solution procedure, we assume the following form of solution for ( u,v,w b ,w s
) that satisfies the
boundary conditions
cos( )sin( ) sin( )cos( ) sin( )sin( ) sin( )sin( ) y y y y
b s u v
mn U x V x mn
,
(19)
bmn w W x w W x
smn
where U mn
, V mn
,W bmn
, and W smn
are arbitrary parameters. Eqn.(15) in combination with Eqn. (16) can be combined into a
system of first order equations as: , K F
(20)
where and F denotes the columns
T mn mn bmn smn U V W W , , ,
and T F
0, 0, q q ,
(21)
,
mn
mn
and
11 12 a a a a a a a a a a a a a a a a 13 12 22 23 13 23 33
14
K
24
(22)
34
14
24
34
44
= a ji of the coefficient matrix [K]. The elements of the symmetric matrix [K] presented in Eqn. (23) are
The elements a ij
given by
2 A A 11
2
a
11
66
A A
a
12
12
66
2
2 66 2 ) ]
(
a
B
12 B B
[
13
11
s
s
2 66 2 ) ] s
2
(
a
B
12 B B
[
(23)
14
11
205
Made with FlippingBook - professional solution for displaying marketing and sales documents online