Issue 51
S. Merdaci et alii, Frattura ed Integrità Strutturale, 51 (2020) 199-214; DOI: 10.3221/IGF-ESIS.51.16
w
w
b b x w y
s
( , , ) u x y z u x y z ( , )
f z
( )
0
x
w
s
( , , ) v x y z v x y z ( , )
f z
( )
(4)
0
y
( , , ) w x y z w x y w x y ( , ) ( , )
b
s
The number of unknown functions is only four, while five or more in the case of other shear deformation theories (Tab. 1). The strains associated with the displacements in Eqn. (5) are
2
2
df z
z
z
( ) 1
5
3 4
5
f z
and g z
( ) 1 '( ) f z
'( )
(5)
2
2
dz
4
h
h
2
2
u
w
w
b
s
0
z
f z
( )
x
2
2
x
x
x
2
2
v
w
w
b
s
0
z
f z
( )
y
2
2
y
y
y
2
2
0 0 u v x y
w
w
(6)
b
s
z
f z
2
( ) 2
xy
x y
x y
w
w
s
s
z
g z
g z
and
( )
;
( )
0
yz
xz
y
x
For elastic and isotropic FGMs, the constitutive relations can be written as
x y xy
x y xy
11 Q Q Q Q 12
0 0
12
yz zx
yz zx
Q
0
44
(7)
,
22
Q
0
55
Q
0 0
66
, y
, y
, xy
, yz
, yx
) and ( x
, xy
, yz
) are the stress and strain components, respectively. Using the
,
where ( x
yx
Q , can be expressed as
material properties defined in Eqn.(1), the stiffness coefficients, ij
E z
E z
( ) E z
E z
( )
( )
( )
11 Q Q
11 Q Q
Q
Q Q Q
(8)
,
,
,
2 1
22
22
12
44
55
66
2
2
2
1
1
1
E QUILIBRIUM EQUATIONS he static equations can be obtained by using the principle of virtual displacements. It can be stated in its analytical form where is the top surface . By substituting Eqns. (6) and (7) into Eqn. (9) and integrating through the thickness of the plate, Eqn. (14) can be rewritten T /2 /2 0 h x x y y xy xy yz yz xz xz h d dz q W d (9)
202
Made with FlippingBook - professional solution for displaying marketing and sales documents online