PSI - Issue 50
S.A. Filin et al. / Procedia Structural Integrity 50 (2023) 91–99 S. A. Filin at al. / Structural Integrity Procedia 00 (2022) 000 – 000
99
9
Rysaev, U.S., Nafikov, A.B., Gilmutdinov, A.T., Nafikova, R.F., Rysaev, V.U., 2007. Synergistic stabilizing compositions for chlorinated hydrocarbons. Bashkir Chemical J. 14(4), 32-36. (In Russ.) Polevoy, A.A., 2014. Persecution of freons — who really benefits from this? Plumbing, heating, air conditioning 4, 78-81. (In Russ.) Bakirova, I.N., Zenitova, L.A., 2009. Gas-filled polymers. Publishing house of Kazan. gos. technol. un-ta, Kazan. (In Russ.) Chemist's Handbook 21: Chemistry and chemical technology. URL: http://chem21.info/info/351853/ (In Russ.) Potelov, V.V., Senik, B.N., Sukhachev, A.B., Nesmelov, E.A., 2006. Cleaning the surface before applying the coating. Applied physics 6, 146 148. (In Russ.) Vukolov, K.Yu., Gureev, V.M., Guseva, M.I., Danelyan, L.S., Zvonov, S.N., Evstigneev, S.A., Zatekin, V.V., Kulikauskas, V.S., 2006. Study of films deposited on mirrors in Tokmak T-10. Poverkhnost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya 4, 5-8. (In Russ.) Mitin, A., Zagustina, N., Pushnov, A., Nikolaikin,a N. 2015. The Removal Efficiency of Dichloromethane Vapors by Biofiltration on Various Packing. Ecology and Industry of Russia 19(5), 20-25. https://doi.org/10.18412/1816-0395-2015-5-20-25. (In Russ.) Minakova, T.S., Daibova, E.B., Savel'Eva, L.A., Zakharenko, V.S., 2008. Interaction of Freon-22 with aluminum and magnesium oxides. Protection of Metals 44(2), 198-201. https://doi.org/10.1134/S0033173208020161 Tsvetkov O.B., 2008. Modern refrigerants, coolants and problems of ecology. Refrigeration equipment 1, 30-36. (In Russ.) Antipov, A.V., 2010. Promising refrigerants. Milk processing 12(134), 6-7. (In Russ.) Antipov, A.V., 2011. The main "fuel" of the refrigeration industry. Meat technologies 3(99), 46-47. (In Russ.) Filin, S.A., Rogalin, V.E., Kaplunov, I.A., 2019. Regeneration and utilization of solvents after the process of physical and chemical cleaning of metal optics. IOP Conf. Series: Materials Science and Engineering 656, 012018. http://doi.org/10.1088/1757-899X/656/1/012018 Ilyin, M.K., Filin, S.A., 1992. Method of cleaning metal substrates of optical products. Copyright certificate RUS P SU No 1734884. Makshantsev, B.I., Rovinskiĭ, R.E., Rogalin V.E., 1985. Influence of insulator films on a metal surface on optical breakdown. Sov. J .Quantum Electronics 15(1), 10 -14. http://doi.org/10.1070/QE1985v015n01ABEH005834 Filin, S.A., Rogalin, V.E., Kaplunov, I.A., 2019. The Choice of Solvents for Cleaning Metal Optics in Order to Increase the Threshold of Optical Damage. IOP Conf. Series: Journal of Physics: Conf. Series 1352, 012019. http://doi.org/10.1088/1742-6596/1352/1/012019 Ilyin, M.K., Filin, S.A., Yampolsky, V.I., 1995. A method of processing a metal part with a laser beam. RUS Patent No 2027570. Ageev, A.A., Volkov, V.A., 2015. Adsorption of surfactants. Moscow State University of Design and Technology, Moscow. (In Russ.) Filin, S., Rogalin, V., Kaplunov, I. and M Satayev, 2020. Physical and chemical cleaning of the surface of power metal optics for the purpose of increase in beam firmness. IOP Conf. Series: Materials Science and Engineering 939, 012022. http://doi.org/10.1088/1757 899X/939/1/012022 Lidin, R.A., Andreeva, L.L., Molochko, V.A., 1987. Handbook of inorganic Chemistry.Chemistry, Moscow. (In Russ.) Gurvich, L.V., Karachevtsev, G.V., Kondratiev, V.N., 1974. The energy of breaking chemical bonds. Ionization potential and electron affinity: handbook. USSR Academy of Sciences, Moscow. (In Russ.) Rambidi, N.G., Berezkin, A.V., 2008. Physical and chemical bases of nanotechnologies. Physico-mathematical literature. Moscow. (In Russ.) Tables of physical quantities: Handbook, 1976. Edited by I.K. Kikoin. Atomizdat. Moscow. (In Russ.) Bronin, F.A., Chernov, A.P., 1978. Ultrasonic cleaning of parts in freon compositions. Chemistry, Moscow. (In Russ.) URL: http://www.bst3m.ru/ster/zau.pdf Apollonov V.V., Vas'kovski ĭ , Yu.M., Zhavoronkov, M.I., Prokhorov, A.M., Rovinski ĭ , R.E., Rogalin, V.E., Ustinov, N.D., Firsov, K.N., Tsenina, I.S. and Yamshchikov,V.A., 1985. High-power electric-discharge CO 2 laser with easily ionizable substances added to the mixture. Sov. J. Quantum Electronics 15(1), 1 – 3. http://doi.org/10.1070/QE1985v015n01ABEH005831 Drobot, A.D., Ilyin, M.K., Ovnanyan, R.M., Rogalin, V.E., Filin, S.A., Yampolsky, V.I., 1990. Degradation and restoration of copper mirrors of pulsed CO 2 laser. Laser technology and optoelectronics 2(54), 49-51. (In Russ.) Rogalin, V.E., 2013. Optical stability of copper mirrors for high-power pulsed TEA CO 2 lasers. Materials Science 9, 34-42. (In Russ.) Hyvarinen, V., Sorjonen, M., Peiponen, K.E., Silvennoinen, R., Niskanen, T., Kalliokoski J., 2000. On all-optical laser cleaning and inspection of contaminated concave metal surfaces. Optics and Lasers in Engineering 33(4), 311-315. http://doi.org/10.1016/S0143-8166 (00)00051-8 Khan, S.A., Boltaev, G.S., Iqbal, M., Kim, V., Ganeev, R.A., Alnaser, A.S., 2021. Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Applied Surface Science 542, 148560. http://doi.org/10.1016/j.apsusc.2020.148560 Bertasa, M., Korenberg, C., 2022. Successes and challenges in laser cleaning metal artefacts: a review. J. Cultural Heritage 53, 100-117. http://doi.org/10.1016/j.culher.2021.10.010 Ding, S.-S., Liu, G.-D., Li, X.-M., Feng, Q.-Y., Tong, Z.-H., Cheng, H.-T., 2021. Study on the mechanism and quality of metal cleaning and coloring by nanosecond laser. Surface Technology 50(3), 183-190. http://doi.org/10.16490/j.cnki.issn.1001-3660.2021.03.016 Li, J., Liu, H., Lan, J., Shi, L., 2020. Imaging feature analysis-based intelligent laser cleaning using metal color difference and dynamic weight dispatch corrosion texture. Photonics 7(4), 1-17. https://doi.org/10.3390/photonics7040130 Li, X., Wang, D., Gao, J., Zhang, W., Li, C., Le,i Y., Wang, N., 2020. Influence of ns-laser cleaning parameters on the removal of the painted layer and selected properties of the base metal. Materials 13(23), 1-7. https://doi.org/10.3390/ma13235363
Made with FlippingBook - Online catalogs