PSI - Issue 50

Kirill E. Kazakov et al. / Procedia Structural Integrity 50 (2023) 131–136 Kirill E. Kazakov / Structural Integrity Procedia 00 (2022) 000 – 000

134

4

  

 

  

( ) 2 ( ) 2  f x xf x

  

( ) f x xf x f x ( ) ( ) 2 2   

1 ~ x

( )        k k f x 1

  

( ) 1   

( ) 0. 

1 xf x

1 f x

(11)

2

2

Let us compare equation (11) with equation (9). In order, for the resulting equation, to be Kummer ’s differential equation, it is necessary that

( ) 2 ( ) 2 f x xf x 

(12)

1

,

1 k x

 

2

( ) f x xf x f x    ( ) ( ) 2 2

1 ~ x

  

  

(13)

.

k

 

2

k

k

2

The solution of ordinary differential equation (12) is the function

(14)

( ) x k f x c x e    ( 1)/2 /2 1

,

2

0

where c 0 is an arbitrary constant. Substitute this representation into equation (13):

~

2

2

4 1 ~ ( 1) 1 x k k x k         

2 4 k x        1 k x

4 1 ( 1) 1 k x 

k

4 1 1 2

  

.

k

1   

2

2

k

Due to the linear independence of the functions 1, x , x – 1 , we obtain

2 1 ~  

1,   k

2,

k

k

(15)

1

2

and, according to formula (14), the function f 2 ( x ) takes the form

(16)

/2

( ) 2 x f x c e   0

.

Thus equation (11) is transformed to Kummer ’s differential equation

2 1 ~  

( ) (1 ) ( )     x f x

( ) 0. 

1 xf x

1 f x

(17)

1

The general solution of the resulting differential equation (17) is a linear combination of Kummer ’s function (0.5(1 ~),1, ) x M   and Tricomi's function (0.5(1 ~),1, ) x U   (confluent hypergeometric functions, see Abramowitz and Stegun (1964), Olde Daalhuis (2010)), that is,

.

(18)

( ) f x cM 

(0.5(1 ~),1, )  

(0.5(1 ~),1, ) x  

x cU 

1

1

2

Using formulas (10), (15), (16), (18), it is possible to obtain a general solution of differential equation (8):

(0.5(1 ~),1,2ln( / ))  

, (0.5(1 ~),1,2ln( / )) 0 r r  

1 CM

r r CU 

( )

u r

0

2

(19)

r

1 C and

2 C are new arbitrary constants that are determined from additional conditions (6):

where

Made with FlippingBook - Online catalogs