PSI - Issue 50

ScienceDirect Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2022) 000 – 000 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2022) 000 – 000 Available online at www.sciencedirect.com

www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

Procedia Structural Integrity 50 (2023) 192–199

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0 ) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers Abstract The main technological problems in the synthesis of metallic composites containing carbon nanotubes or carbide particles are the distribution of the hardening phase in the bulk composite, the strength of its adhesion to the matrix, as well as the chemical and structural stability of the dispersed phase within the composite. These tasks are solved in various ways, primarily at the stage of preparation of the dispersed phase and the monolithic composite matrix. In our work, to ensure good wettability of the dispersed phase and uniformity of its distribution in the bulk aluminum, carbon nanotubes and carbide were metallized with a thin layer of metallic nickel. In the course of work on the creation of aluminum matrix materials reinforced with carbon nanotubes, the necessary conditions were selected for the formation of a metal matrix composite material with improved mechanical properties. As a result, a technique for obtaining an aluminum matrix composite was developed, which makes it possible to prevent the carbon nanotubes agglomeration and suppress the chemical reactions between the dispersed reinforcing phase and the matrix. The method of obtaining composite aluminum matrix material includes multiple cold pressing, as well as alternating pressing and temperature treatment. As it has been shown, the reinforcing phases of different structures have different effects on the mechanical properties of the aluminum matrix composite. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers Keywords: nanotubes; Al matrix composite; mechanical properties; powder metallurgy method 16th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS 2022) Engineering of the surface of the dispersed phase and bulk metal composite to create promising materials N.F. Morozov, E.G. Zemtsova*, L.A. Kozlova, P.E. Morozov, Yu.V. Sidorov, B.N. Semenov, V.M. Smirnov Saint Petersburg State university, 198504, Universitetskii Pr. 26, Saint-Petersburg, Russian Federation Abstract The main technological problems in the synthesis of metallic composites containing carbon nanotubes or carbide particles are the distribution of the hardening phase in the bulk composite, the strength of its adhesion to the matrix, as well as the chemical and structural stability of the dispersed phase within the composite. These tasks are solved in various ways, primarily at the stage of preparation of the dispersed phase and the monolithic composite matrix. In our work, to ensure good wettability of the dispersed phase and uniformity of its distribution in the bulk aluminum, carbon nanotubes and carbide were metallized with a thin layer of metallic nickel. In the course of work on the creation of aluminum matrix materials reinforced with carbon nanotubes, the necessary conditions were selected for the formation of a metal matrix composite material with improved mechanical properties. As a result, a technique for obtaining an aluminum matrix composite was developed, which makes it possible to prevent the carbon nanotubes agglomeration and suppress the chemical reactions between the dispersed reinforcing phase and the matrix. The method of obtaining composite aluminum matrix material includes multiple cold pressing, as well as alternating pressing and temperature treatment. As it has been shown, the reinforcing phases of different structures have different effects on the mechanical properties of the aluminum matrix composite. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers Keywords: nanotubes; Al matrix composite; mechanical properties; powder metallurgy method 16th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS 2022) Engineering of the surface of the dispersed phase and bulk metal composite to create promising materials N.F. Morozov, E.G. Zemtsova*, L.A. Kozlova, P.E. Morozov, Yu.V. Sidorov, B.N. Semenov, V.M. Smirnov Saint Petersburg State university, 198504, Universitetskii Pr. 26, Saint-Petersburg, Russian Federation

* Corresponding author. Tel.: +7-812-428-4033. E-mail address: ezimtsova@yandex.ru * Corresponding author. Tel.: +7-812-428-4033. E-mail address: ezimtsova@yandex.ru

2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers 2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers

2452-3216 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the MRDMS 2022 organizers 10.1016/j.prostr.2023.10.041

Made with FlippingBook - Online magazine maker