Issue 50

Ch. F. Markides, Frattura ed Integrità Strutturale, 50 (2019) 451-470; DOI: 10.3221/IGF-ESIS.50.38

        2 3

   

   

C

, , f r t C λ

ρ

1

, , f r t

, , , m f r t

4 3

2

 1 2

(

)

2

(

)

, , , D f r t

, , , D f r t

λ

KR

λ

C

, , , m f r t

, , , m f r t

, , f r t

(22)

2

        4 3

2

       

   

   

   

   

D λ

C

λ

C

C

ρ

ρ

1

1

, , f r t

, , f r t

, , , m f r t

, , f r t

, , f r t

2 3

 1 2

2

(

)

2

0

, , , D f r t

λ

KR

, , f r t C λ

λ

KR

2

, , , m f r t

, , , m f r t

, , , m f r t

, , , m f r t

which, after setting:

3 2

m

(

)

(23)

, , , D f r t

, , f r t

becomes:

        2 3

   

   

C

, , f r t C λ

ρ

1

, , f r t

, , , m f r t

3

2

 1 2

m

m

(

)

2

(

)

, , f r t

, , f r t

λ

KR

λ

C

, , , m f r t

, , , m f r t

, , f r t

(24)

        4 3

2

2

   

   

   

   

   

   

C

λ

C

C

D

ρ

ρ

1

1

, , f r t

, , , m f r t

, , f r t

, , f r t

f

r t

, ,

 1 2

m

2

2

0

, , f r t

λ

KR

, , f r t C λ

λ

KR

λ

2

, , , m f r t

, , , m f r t

, , , m f r t

, , , m f r t

Eq.(24) has one real solution which upon being introduced in Eq.(23) provides ℓ – D,f,r,t as:

        2 3

         3

   

C

, , f r t C λ

ρ

1

1 2

, , f r t

, , , m f r t

 1 2

, , , D f r t

λ

KR

λ

C

, , , m f r t

, , , m f r t

, , f r t

    

2

2

   

           

   

   

   

        1 27  

   

C

, , f r t C λ

, , f r t C λ

λ

C

  ρ

1

1 1 2 6

, , , m f r t

, , f r t

, , f r t

, , , m f r t

, , , m f r t

 1 2

 1 2

 

2

λ

KR

λ

C

λ

C

, , f r t C λ

, , , m f r t

, , , m f r t

, , , m f r t

, , f r t

, , , m f r t

, , f r t

    

3 2

  

   

4

   

  

2

  

  

   

        1 3  

   

   

  

KRD

C

λ

C

, , f r t C λ

ρ

1

1 2

1 9

, , f r t

, , f r t

, , , m f r t

, , f r t

m

, , f r t

,

  

 

 

 1 2

1

2

1 2

 4(1 )

ρ C

λ

KR

, , f r t C λ

λ

C

, , f r t

, , , m f r t

, , , m f r t

, , , m f r t

, , f r t



            1 27

   

4

2

           

   

   

   

   

C

, , f r t C λ

, , f r t C λ

λ

C

  ρ

1

1 6

, , f r t

, , , m f r t

, , , m f r t

, , , m f r t

, , f r t

 1 2

 1 2

 

2

1 2

λ

KR

λ

C

λ

C

, , f r t C λ

, , , m f r t

, , , m f r t

, , f r t

, , , m f r t

, , f r t

, , , m f r t

1 3 1 2 2 2

 

   

  

   

  

  

KRD

1 1 2

, , f r t

          

 4(1 )

ρ C

, , f r t

    

   

2

2

           

  

  

   

        1 27  

   

C

, , f r t C λ

, , f r t C λ

λ

C

  ρ

1

1 6

, , f r t

, , , m f r t

, , , m f r t

, , , m f r t

, , f r t

  

 

 1 2

 1 2

2

1 2

λ

KR

λ

C

λ

C

C

λ

, , , m f r t

, , , m f r t

, , f r t

, , , m f r t

, , f r t

f

, r t

, , , m f r t

,

    

3

  

4

2

   

  

2

   

        1 3  

        1 9

   

   

  

KRD

C

λ

C

, , f r t C λ

ρ

1

1 2

 

, , f r t

, , f r t

, , , m f r t

, , f r t

, , , m f r t

 

 1 2

 

1

2

1 2

 

 4(1 )

ρ C

λ

KR

, , f r t C λ

λ

C

, , f r t

, , , m f r t

, , , m f r t

, , , m f r t

, , f r t



462

Made with FlippingBook Online newsletter