Issue 50
H. Saidi et alii, Frattura ed Integrità Strutturale, 50 (2019) 286-299; DOI: 10.3221/IGF-ESIS.50.24
where K are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is homogeneous and isotropic, we will get 1 2 S S S K K K . If the shear layer foundation stiffness is neglected, Pasternak foundation becomes a Winkler foundation. The variation of kinetic energy of the plate can be expressed as: W K is the modulus of subgrade reaction (elastic coefficient of the foundation) and 1 S K and 2 S
( ) K u u v v w w z dV
V
A
0 0 0 0 0 I u u v v w w 0 0
0 w w x x
0 w w y y
0
0
u v
I u
v
1 0
0 0
0
y
u v
J u
v
1 0
0 0
0
x x
y
w w w w
0
0
0
0
I
K
2
2
(13)
y
x x y y
x x
y
0 w w
w
w
0
0
0
J
dA
2
x x x x
y
y
y
y
where dot-superscript convention indicates the differentiation with respect to the time variable t ; ( ) z is the mass density given by Eq. (1b); and ( i I , i J , i K ) are mass inertias expressed by
h
/2
h
2
( ) z z z dz
I I I
0 1 2 , ,
1, ,
(14a)
/2
h
/2
h
2
( ) z dz
J J K
, , f z f f
1 2 2 , ,
(14b)
/2
Substituting Eqs. (9), (11), and (13) into Eq. (8), integrating by parts, and collecting the coefficients of 0 u , 0 v , 0 w and ; the following equations of motion are obtained:
0 0 1 xy N N I u I
w
x
0
0 : u
J
1
x
y
x
x
N N
w
xy
y
0
0 0 1 I v I
0 : v
J
1
x
y
y
y
b
b
2
2
2 M M y M M 2 s s x y xy
b x
2
M
0 u v x y
y
2
2
0 I w J
0 : w
f
I w I
2
(15)
e
0 0 1
2
0
2
2
x
s
s
2
M S S
s x
2
0 u v x y 0
xy
y
xz
yz
:
J
2
1
2
2
x y
x y
y
x
2 J w K
2
2
0
2
2
2
2
2
2
where x y is the Laplacian operator in two-dimensional Cartesian coordinate system. / /
290
Made with FlippingBook Online newsletter