PSI - Issue 49

Nataliya Elenskaya et al. / Procedia Structural Integrity 49 (2023) 43–50 Author name / Structural Integrity Procedia 00 (2023) 000–000

50 8

Res Part A 108:470–484. https://doi.org/10.1002/jbm.a.36829 Ma S, Tang Q, Han X, et al (2020) Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting. Mater Des 195:109034. https://doi.org/10.1016/j.matdes.2020.109034 Shi J, Zhu L, Li L, et al (2018a) A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep 8:7395. https://doi.org/10.1038/s41598-018-25750-9 Shi Q, Chen Q, Pugno N, Li Z-Y (2018b) Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation. Biomech Model Mechanobiol 17:763–775. https://doi.org/10.1007/s10237-017-0991-6 Shi Q, Shui H, Chen Q, Li Z-Y (2020) How does mechanical stimulus affect the coupling process of the scaffold degradation and bone formation: An in silico approach. Comput Biol Med 117:103588. https://doi.org/10.1016/j.compbiomed.2019.103588 Shui H, Shi Q, Pugno NM, et al (2019) Effect of mechanical stimulation on the degradation of poly(lactic acid) scaffolds with different designed structures. J Mech Behav Biomed Mater 96:324–333. https://doi.org/10.1016/j.jmbbm.2019.04.028 Song K, Wang Z, Lan J, Ma S (2021) Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J Mech Behav Biomed Mater 115:104222. https://doi.org/10.1016/j.jmbbm.2020.104222 Su Y, Champagne S, Trenggono A, et al (2018) Development and characterization of silver containing calcium phosphate coatings on pure iron foam intended for bone scaffold applications. Mater Des 148:124–134. https://doi.org/10.1016/j.matdes.2018.03.061 Varma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Mater Chem Phys 255:123642. https://doi.org/10.1016/j.matchemphys.2020.123642 Wang X, Xu S, Zhou S, et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012 Wu B, Ay SU, Abdel-Rahim A (2018) Trapezoid pixel array complementary metal oxide semiconductor image sensor with simplified mapping method for traffic monitoring applications. Opt Eng 57:1. https://doi.org/10.1117/1.OE.57.9.093106 Wu L, Ding J (2005) Effects of porosity and pore size onin vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res Part A 75A:767–777. https://doi.org/10.1002/jbm.a.30487 Yánez A, Cuadrado A, Martel O, et al (2018) Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Mater Des 140:21–29. https://doi.org/10.1016/j.matdes.2017.11.050 Yang N, Wei H, Mao Z (2022) Tuning surface curvatures and young’s moduli of TPMS-based lattices independent of volume fraction. Mater Des 216:110542. https://doi.org/10.1016/j.matdes.2022.110542 Zhang Q, Jiang Y, Zhang Y, et al (2013) Effect of porosity on long-term degradatio n of poly (ε -caprolactone) scaffolds and their cellular response. Polym Degrad Stab 98:209–218. https://doi.org/10.1016/j.polymdegradstab.2012.10.008 Zheng X, Li N, Xu Y, et al (2022) A bilayer collagen scaffold with bevacizumab stabilizes chondrogenesis and promotes osteochondral regeneration. Mater Des 221:110981. https://doi.org/10.1016/j.matdes.2022.110981

Made with FlippingBook - Online magazine maker