Issue 49
Y. Saadallah et alii, Frattura ed Integrità Strutturale, 49 (2019) 666-675; DOI: 10.3221/IGF-ESIS.49.60
10000 15000 20000 25000 30000 35000
10000 15000 20000 25000 30000 35000
K (MPa)
µ_ve (MPa.min)
0 5000
0 5000
0
0,02
0,04
0,06
0
0,02
0,04
0,06
Strain-rate (1/min)
Strain-rate (1/min)
Figure 6: Dependence of viscoelastic parameters at the strain-rate
12000
100 120 140 160 180
10000
8000
6000
0 20 40 60 80
4000
H (MPa)
µ_vp (MPa.min)
2000
0
0
0,02
0,04
0,06
0
0,02
0,04
0,06
Strain-rate (1/min)
Strain-rate (1/min)
Figure 7: Dependence of viscoplastic parameters at the strain-rate To define the functions that represent the mathematical relationship of the strain rate with the viscoelastic and viscoplastic parameters, a nonlinear regression technique is considered. As a result, a power law connects both the viscoelastic parameters and the viscoplastic parameters to the strain-rate. The curves that represent the sensitivity of the viscoelastic parameters to the strain-rate are illustrated in Fig. 6. The sensitivity of the viscoplastic parameters is illustrated in Fig. 7. With the exception of the elastic modulus E and the coefficient of hardening n which are independent of it, the functions obtained are shown in Tab. 3.
H .
K
e .
vp
ve
0,87 6, 6166
0,88 2, 3512
0,02 28, 059
0,12 222, 27
0,21 58881
Table 3 : Relationship of the parameters with the strain-rate
673
Made with FlippingBook - Online catalogs